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Abstract 

Atlantic salmon populations in Norway face a variety of threats, which in turn is compounded by 
climate change, affecting the arctic areas most. In northern Norway salmon populations’ status remains 
relatively stable, however, the increasing pressure from farming industry in combination with growing 
mean annual water temperatures in rivers and at sea puts these populations at risk. Investigating temporally 
replicated samples may assist in the detection of changes in population genetic structure and diversity in 
time, which in turn aids in evaluation of the consequences of environmental changes, such as deterioration 
of habitat, climate change, introgression from hatchery supplementations or farmed escapees. 

We screened twelve northern Atlantic salmon populations over 9 to 14 years using a high genome 
coverage SNP-array (> 60,000 SNPs) to evaluate the level of temporal genetic variation on genome-wide 
level. We aimed to identify SNPs showing significant allele frequency differences among temporally 
replicated samples within populations and characterize biological functions of those genomic regions.  

The observed genome-wide temporal variation in the northernmost populations of Atlantic salmon 
indicated relatively stable genetic population structure in the majority of studied stocks. However, certain 
genomic regions were more variable that the others, particularly in populations of smaller stock census 
sizes, which might indicate both the effects of gene flow from farmed escapees and climate changes. Given 
fast growing and spreading of salmon aquaculture industry towards northern areas of Norway and fast 
increase of mean temperature in the Arctic, the generated genome-wide data will serve as a baseline to 
study genomic changes of salmon populations in the future. 
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Introduction 
Atlantic salmon populations in Norway face a variety of threats, including hydropower regulation, 

degradation of freshwater habitats from land use practices, pollution, parasites, fish diseases, introduced 

and invasive species, interbreeding with farmed escapees, overexploitation in fisheries, etc. (Forseth et 

al. 2017). All of these factors are compounded by climate change, which affects the arctic areas most 

(Kaufman et al. 2009). In northern Norway salmon populations’ status remains relatively stable, 

however the increasing pressure from farming industry (Glover et al. 2019, Fauske 2021) in 

combination with growing mean annual water temperatures in rivers and at sea (Ferré et al. 2012, 

Niemelä et al. 2022a, Niemelä et al. 2022b, c) puts these populations at risk. For example, while the 

spawning stock target achievement of the majority of populations in northern Norway is good, genetic 

integrity tends to deteriorate (https://lakseregisteret.fylkesmannen.no/). The spread of salmon 

aquaculture in the area during the last decade (Fauske 2021) and interbreeding of wild salmon with 

farmed escapees (Glover et al. 2019) is the main factor affecting the loss of genetic integrity in wild 

populations. Gene flow due to introgressive hybridization with aquaculture salmon causes changes of 

wild population genetic structure and variation (Glover et al. 2012), which in turn may lead to 

phenotypic changes and disrupt local adaptations and lead to loss of fitness (Bourret et al. 2011, Glover 

et al. 2017). 

Investigating temporally replicated samples may assist in the detection of changes in population 

genetic structure and diversity in time, which in turn aids in evaluation of the consequences of 

environmental changes, such as deterioration of habitat (Yamamoto et al. 2004), climate change, 

introgression from hatchery supplementations (Vasemägi et al. 2005, Finnegan and Stevens 2008, 

Ozerov et al. 2016) or farmed escapees (Skaala et al. 2006, Bourret et al. 2011, Glover et al. 2012). The 

level of temporal variation as an indicator of population genetic integrity has been studied in salmon 

using various genetic markers including protein polymorphism (Mcelligott and Cross 1991, Jordan et 

al. 1992), microsatellites (Tessier and Bernatchez 1999, Skaala et al. 2006, Vähä et al. 2008, Glover et 

al. 2012, Ozerov et al. 2013) and SNPs (Östergren et al. 2021). However, while analyses of tens or 

hundreds of markers are able to reveal significant mean temporal changes in salmon population 

structure and variability, it does not allow drawing firm conclusions on which genes and/or regulatory 

genomic regions have been affected by contemporary natural or human-driven selection.   

Advances in high-throughput sequencing technologies and SNP genotyping methods (Houston et 

al. 2014, Tsai et al. 2016, Wenne et al. 2016, Yáñez et al. 2016, Gao et al. 2020), as well as the 

availability of a highly continuous and annotated genome assembly (Lien et al. 2016) enable screening 

of tens to hundred thousands of markers across the Atlantic salmon genome. This allows to shed light 

on the patterns of genome-wide changes and assists in revealing genomic regions affected, e.g. by 

identifying genomic regions in wild fish, which are more or less resistant to genetic introgression from 

aquaculture escapees or hatchery stocking (Kovach et al. 2016, Ozerov et al. 2016), or identifying 
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genomic regions showing extensive genetic change linked to environmental changes (Kjærner-Semb et 

al. 2016, Gabián et al. 2022). For example, assessment of the effects of hatchery releases on wild salmon 

populations in the Gulf of Finland, Baltic Sea, showed that some genomic regions are more vulnerable 

to introgressive hybridization than the others, which, in turn, may have functional consequences for 

indigenous populations (Ozerov et al. 2016). 

 Recent studies have shown that about two thirds of Norwegian populations have been affected by 

farmed escapees (Glover et al. 2019) and in some rivers this proportion has reached up to 80% (Fiske 

et al. 2006, Karlsson et al. 2016). Atlantic salmon populations in the north are considered to be relatively 

pristine and less affected by genetic introgression of farmed genes. For example, recent reports showed 

that the proportion of aquaculture salmon can reach up to 2-4% of spawning populations in Finnmark 

rivers (Karlsson et al. 2016, Glover et al. 2019). However, whether some regions of the wild salmon 

genome are more susceptible for introgression is not known, there is an urgent need to evaluate the 

potential functional effects of farmed gene flow on wild populations. Furthermore, given a rapid spread 

of salmon aquaculture northward during recent years, it is important to establish a reliable genome-

wide baseline for future evaluation of its consequences. 

To evaluate the level of temporal genetic variation on genome-wide level we screened twelve 

northern Atlantic salmon populations over 9 to 14 years using a high genome coverage SNP-array 

(> 60,000 SNPs). We aimed to identify SNPs showing significant allele frequency differences among 

temporally replicated samples within populations and characterize biological functions of those 

genomic regions. Simultaneously, this work also generated genome-wide baseline of northernmost 

populations consisting of thousands of SNPs for future applications. 

 

Material and methods 
DNA samples  

In total, 12 populations of Atlantic salmon representing previous (2006/2010/2011) and recent 

samples (2019/2020) were chosen for individual genotyping on SNP array (Fig. 1). Both the previous 

and recent samples were selected among DNA extracts used for the Atlantic salmon baseline generation 

consisting of juvenile fish (see details on DNA extraction, quality control and microsatellite genotyping 

in (Ozerov et al. 2017, Ozerov et al. 2022b). In brief, each sample was surveyed for genetic variation at 

31 microsatellite DNA loci to ensure high quality of DNA extracts by excluding: a) brown trout or/and 

Atlantic salmon – brown trout hybrid individuals; and b) contaminated samples, i.e. the samples, which 

showed the presence of DNA from multiple individuals. Further, to remove the effect of family structure 

the sibship-reconstruction method implemented in Colony 2.0.6.6 (Jones and Wang 2010) was applied 

to test for full- and half-sib relationships in each population and all full-siblings except one pair per 

family were excluded from further analyses (see Ozerov et al. 2017; 2022). In addition, due to possible 

effect of long-term storage on DNA integrity, previous DNA extracts (2006/2010/2017) were examined 
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for degradation by visual inspection on 1% agarose gels. Samples containing low molecular weight 

DNA (indicative of degradation) were discarded from further analyses. In total, high quality DNA 

extracts of 1152 individuals, were included for SNP genotyping (Table 1). 

 

SNP genotyping and quality control 

The initial concentration of DNA extracts was first measured with the NanoDrop™ 1000 (Thermo 

Scientific) and subsequently diluted to 23 ng/ul. Diluted DNA extracts were analyzed using an Atlantic 

salmon AxiomTM Genotyping Array, containing probes for 60,251 SNPs, at the Centre for Integrative 

Genetics (CIGENE), Norway. Genotypes from samples showing a dish quality control (DQC) < 0.82 

or call rate < 0.90 were discarded. Only those data from SNPs classified as “Poly High Resolution” were 

retained in the dataset (51,368 SNPs). SNPs with a minor allele frequency (MAF) < 0.05 were also 

removed. An exact test for Hardy-Weinberg equilibrium (HWE) based on 1000 Monte Carlo 

permutations of alleles (Guo and Thompson 1992) was performed for each temporal sample separately 

using hw.test function of pegas 1.1 package in R 4.1.3 (R Core Team 2021). False discovery rate (FDR) 

was estimated with (Benjamini and Hochberg 1995) procedure using p.adjust function of stats 3.6.2 

package in R. SNPs showing deviation from HWE in > 50% of the temporal samples were discarded. 

Finally, SNPs with > 5% of missing genotypes were excluded. After applying these filters, data from 

50,196 SNPs and 1102 individuals remained available for further analyses. 

 

 
Fig. 1. Map showing geographical locations and sampling years of analysed Atlantic salmon 

populations. 



 

Table 1. Studied Atlantic salmon populations; year of sampling; population ID; salmon population status shown as spawning stock target achievement and 

spawning potential (SSTP) and genetic integrity (GI); number (n) of analyzed and quality control passed (nQC) samples; observed (HO) and expected (HE) 

heterozygosity; and inbreeding coefficient (f). 

 
Population Year ID SSTP* GI* N NQC QC 

passed, % 
HO HE f 

Grense Jakobselv 2006 GJ06 NA NA 48 48 100.0 0.397 0.391 -0.027 
Grense Jakobselv 2019 GJ19 good moderate 48 41 85.4 0.404 0.398 -0.005 
Neidenelva 2006 NE06 NA NA 48 48 100.0 0.390 0.389 0.008 
Neidenelva 2019 NE19 very good moderate 48 39 81.3 0.406 0.398 -0.036 
Vestre Jakobselva 2006 VJ06 NA NA 48 48 100.0 0.403 0.403 0.009 
Vestre Jakobselva 2019 VJ19 very good bad 48 48 100.0 0.400 0.404 0.017 
Komagelva 2006 KO06 NA NA 48 48 100.0 0.389 0.385 -0.016 
Komagelva 2019 KO19 very good bad 48 47 97.9 0.397 0.393 -0.002 
Tana mainstem Tanabru 2010 TMSTB10 NA NA 48 48 100.0 0.380 0.383 0.003 
Tana mainstem Tanabru 2020 TMSTB20 very bad good 48 46 95.8 0.389 0.385 -0.010 
Tana mainstem Outakoski 2010 TMSOU10 NA NA 48 48 100.0 0.384 0.387 0.005 
Tana mainstem Outakoski 2020 TMSOU20 very bad good 48 46 95.8 0.394 0.387 -0.011 
Tana mainstem Yläköngäs 2010 TMSYK10 NA NA 48 48 100.0 0.385 0.388 0.004 
Tana mainstem Yläköngäs 2020 TMSYK20 very bad good 48 37 77.1 0.397 0.389 -0.023 
Lakselva Porsanger 2006 LP06 NA NA 48 48 100.0 0.381 0.380 0.008 
Lakselva Porsanger 2020 LP20 very good moderate 48 47 97.9 0.386 0.386 0.010 
Repparfjordelva 2006 RF06 NA NA 48 47 97.9 0.398 0.400 -0.003 
Repparfjordelva 2020 RF20 very good moderate 48 37 77.1 0.410 0.398 -0.035 
Altaelva 2010 AL10 NA NA 48 46 95.8 0.385 0.388 0.009 
Altaelva 2020 AL20 very good moderate 48 48 100.0 0.386 0.386 -0.010 
Reisaelva 2011 RE11 NA NA 48 48 100.0 0.382 0.386 0.021 
Reisaelva 2020 RE20 very bad good 48 47 97.9 0.394 0.387 -0.032 
Målselv 2011 ME11 NA NA 48 48 100.0 0.410 0.410 0.005 
Målselv 2020 ME20 very good very bad 48 46 95.8 0.420 0.412 -0.022 
Total         1152 1102 95.7 0.394 0.392 -0.006 

*Data obtained from https://lakseregisteret.fylkesmannen.no/



 

Estimation of basic population genetics statistics 

The R package adegenet 2.1.3 (Jombart 2008, Jombart and Ahmed 2011) was used to convert SNP 

data into a genind object. The basic descriptive statistics for each SNP locus and population (allelic 

richness, expected and observed heterozygosity) were calculated using basic.stats function of hierfstat 

0.5-11 R-package (Goudet 2005). The same package was applied to estimate within-population 

inbreeding coefficients (FIS) and between-population pairwise fixation indices (FST; (Weir and 

Cockerham 1984) among populations using pairwise.WCfst function. Overall population genetic 

structure was examined by applying principal component analysis (PCA) using the dudi.pca function 

of the ade4 1.7-16 R-package (Dray and Dufour 2007). A consensus Neighbor-joining tree based on 

Nei’s genetic distances (Nei 1972) and 1000 bootstrap replicates over loci was constructed using aboot 

function of R-package poppr 2.9.2 (Kamvar et al. 2014) and plotted using R-package ape 5.6-2 (Paradis 

et al. 2004, Paradis and Schliep 2019). Significance of genetic differentiation per locus between 

temporal samples within each population was estimated using exact G-test in Genepop 4.7.5 (Raymond 

and Rousset 1995, Rousset 2008) with the Markov chain parameters set at 100,000 dememorization 

steps, 100 batches, and 5,000 iterations per batch. P-values of locus-specific genetic differentiation 

between temporal samples along chromosomes were plotted using R-package CMPlot 3.7.0 (Yin et al. 

2021). SNPs were classified as genome-wide significant if P-value was below the Bonferroni threshold 

for multiple testing (alpha = 0.05) of 0.05/50,196 (total number of SNPs genome-wide) and graded as 

chromosome-wide significant for P-values below the Bonferroni threshold estimated as 0.05/1,724 

(average number of SNPs per chromosome). In our study genome-wide significant threshold was 

P ≤ 9.961×10-7, which is equivalent to −log10(P) = 6.00, while chromosome-wide significant threshold 

was P ≤ 2.900 ×10-5, which is equivalent to −log10(P) = 4.54. 

 

SNP annotation and gene ontology (GO) analysis 

SNPs were annotated with snpeff 5.0 (Cingolani et al. 2012) using ICSASG v2 Atlantic salmon 

reference genome sequence and annotation (NCBI: GCA_000233375.4). For GO analysis, salmon 

genes that are orthologous to human were identified using the rentrez package (Winter 2017) in R. 

Further candidate genes were classified to GO categories using panther 17.0 (Thomas et al. 2003). 

 
Results 
Mean population genetic estimates 

The highest level of genetic diversity estimated overall loci was observed in Målselva both in 

earlier (HOearl = 0.410, HEprev = 0.410) and recent (HOearl = 0.420, HEres = 0.412) samples, whereas the 

lowest genetic diversity was observed in Tana Bru (HOearl = 0.380, HEearl = 0.383;  HOres = 0.380, HEres 

= 0.386) and Lakselva Porsanger samples (HOearl = 0.381, HEearl = 0.383;  HOres = 0.386, HEres = 0.385; 

Table 2; Fig. 2). Mean observed heterozygosity was higher among recent samples in 11 of 12 
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comparisons (Welch two sample t-test, P < 0.05), whereas mean expected heterozygosity was  higher 

among recent samples in 6 of 12 comparisons (Welch two sample t-test P < 0.05; Table 2). Overall 

level of genetic diversity was slightly higher among recent samples compared to the earlier ones (HOearl 

= 0.381 vs. HOres = 0.386; HEearl = 0.383 vs. HEres = 0.385; both Welch two sample t-tests P < 0.05).  

 

Table 2. Genetic differentiation (FST temp), mean observed (HO diff) and expected (HE diff) heterozygosity 

difference between earlier and recent samples and their respective P-values.  

Population FST temp HO diff P-value 
HO diff 

HE diff P-value 
HE diff 

Grense Jakobselv 0.00703 0.007 0.000 0.007 0.000 
Neidenelva 0.00485 0.016 0.000 0.009 0.000 
Vestre Jakobselva 0.00609 -0.003 0.000 0.002 0.021 
Komagelva 0.00382 0.008 0.000 0.008 0.000 
Tana mainstem Tanabru 0.00077 0.009 0.000 0.001 0.081 
Tana mainstem Outakoski 0.00268 0.011 0.000 0.002 0.051 
Tana mainstem Yläköngäs 0.00073 0.010 0.000 0.000 0.935 
Lakselva Porsanger 0.00457 0.011 0.000 -0.001 0.076 
Repparfjordelva 0.00269 0.005 0.000 0.006 0.000 
Altaelva 0.00002 0.001 0.093 -0.002 0.054 
Reisaelva 0.00112 0.011 0.000 0.001 0.149 
Målselv 0.00070 0.010 0.000 0.002 0.018 

 

 
 
Fig. 2. Mean genetic divergence (FST) between temporal samples within populations estimated using 

50,192 SNPs. 

 

Genetic divergence between temporal samples within populations varied from FST = 0.00002 in 

Altaelva 2010 vs. 2020 to FST = 0.00703 in Grense Jakobselva 2006 vs. 2019 (Fig. 2), which was much 

lower than mean genetic divergence among earlier (FST = 0.030) or recent samples (FST = 0.027). Overall 

genetic variation due to temporal component within populations (0.29%) was 8.97 times lower than that 
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due to spatial component among populations (2.60%; Table 3). This indicates that studied populations 

have been relatively stable over time. 

Table 3. Analysis of molecular variance (AMOVA) in the temporal samples of Atlantic salmon 

populations from northern Norway. 

Source of variation Sum of 
squares 

Percentage 
variation 

P 

Among spatial samples 1336870 2.60 0.001 
Among temporal samples 299395 0.29 0.001 
Among individuals within populations 21087631 -0.54 0.778 
Within individuals 21797696 97.65 0.001 

 

Salmon populations subdivision on the neighbor-joining tree (Fig. 2) and PCA plot (Fig. 3) 

reflected their geographical origin. The temporal samples tended to cluster by the site of origin with a 

bootstrap support that varied between 99.8% and 100% (Fig. 2). 

 

 

Fig. 2. Unrooted neighbor-joining tree based on Nei’s genetic distances showing the genetic 

relationships between the temporally replicated samples of Atlantic salmon populations in northern 

Norway. The number on the nodes indicates the bootstrap values (percentage) obtained after 1000 

replicates. 
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Fig. 3. PCA results of the temporally replicated samples of Atlantic salmon populations from northern 

Norway.  

 

Candidate SNPs showing large temporal changes 

In total, 54 candidate SNPs located in 22 out of 29 chromosomes showed significant genetic 

differentiation between temporal replicates after applying genome-wide significance threshold (Fig. 4). 

The highest number of SNPs showing significant genetic differentiation between temporal samples was 

detected in Grense Jakobselva (n = 13), Vestre Jakobselva (n = 14) and Lakselva Porsanger (n = 10) 

populations, whereas the lowest was observed in Alta (n = 0), Målselva (n = 1), Tana Yläköngäs (n = 1) 

and Tana Bru (n = 1) populations. In addition, the correlation between the number of candidate SNPs 

and genetic divergence between temporal samples within populations (FSTtemp) was significant 

(Pearson’s r = 0.876, P < 0.01). None of the candidate SNPs were overlapped among different 

geographical locations most probably indicating that temporal changes of genetic structure were shaped 

by various factors, including environmental changes, different level of introgression by farmed 

escapees, selection and genetic drift. The majority of candidate SNPs were located in introns (27.9%), 

followed by intergenic (25.4%), 5K downstream (19.7%) and 5K upstream variants (14.8%; Fig. 5). In 

total, candidate SNPs were found within or nearby 30 Atlantic salmon genes. The majority of candidate 

genes were involved in cellular and metabolic processes, and biological regulation (GO biological 

process; Fig. 6), and in catalytic activity and binding (GO molecular function; Fig. 7). 

 



 

 

Fig. 4. The Manhattan plot showing highly divergent SNPs between earlier and recent samples in each Atlantic salmon population. The plot is based on -log10 

(P-value) of G-test and imputation analysis against chromosome position, each colour represents different chromosome. Solid red and dashed blue lines indicate 

genome-wide (P≤9.961×10-7) and chromosome-wide (P≤2.900 ×10-5)significant threshold, genetically divergent SNPs passing these thresholds are shown as 

green and red dots, respectively. 



 

 

 
 
Fig. 5. The number of annotated candidate SNPs in each annotation category. The sum of SNPs per 

annotation category does not correspond to the total number of SNPs due to multiple annotations of 

some SNPs located in nearby (<5 K) or overlapped genes. 

 

 
Fig. 6. Candidate genes classified using GO biological process. 
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Fig. 7. Candidate genes classified using GO molecular function. 

 

For example, substantial temporal changes of allele frequencies of SNPs located in a genomic 

region coding two genes (vestigial-like family member 3 gene, vgll3 and A-kinase anchor protein 11, 

akap11) shown earlier to explain a large proportion in age at maturity variation (Ayllon et al. 2015, 

Barson et al. 2015), were observed in three populations (Komagelva, Tana mainstem Outakoski and 

Målselva; Fig. 6). The most drastic changes were detected in Komagelva, where fluctuation of allele 

frequencies of allele B reached up to 28% (Fig. 8). Further studies, however, required to evaluate the 

functional effect of these observations. 

 

 
Fig. 8. Temporal changes of B-allele frequency at vgll3-akap11 genes region in 12 Atlantic salmon 

populations. Substantial allele frequency changes are indicated with “+”. 
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Discussion 
In this report we assessed for fast contemporary changes at genome-wide level in 12 northernmost 

Atlantic salmon populations. We generated the genetic baseline of > 1,100 individuals genotyped for > 

50,000 SNPs. Although the overall level of temporal variation within each population was low, we 

found a number of SNPs showing significant allele frequency differences among temporally replicated 

samples within populations and found those candidate SNPs associated with a number of genes.  

 

Overall temporal variation and genetic structure 

The overall temporal genetic variation among all studied populations was relatively stable, and 

supported by low level of genetic divergence between temporal samples within populations and by 

AMOVA results, which showed that genetic variation explained by the temporal component within 

populations was nearly nine times lower than that explained by the spatial component among 

populations. Similarly, grouping of temporal samples according to their river of origin as well as 

reflection of geographical pattern on both the neighbor-joining tree (Fig. 2) and PCA plot (Fig. 3) 

support the stability of the overall genetic structure among populations. 

On the other hand, we observed a reduction of the overall level of genetic divergence among 

populations, from FST = 0.030 in 2006-2011 to FST = 0.027 in 2019-2020. In addition, we observed a 

modest, but significant, increase of the overall level of genetic diversity among the recent samples 

compared to the earlier ones. Moreover, mean HE was significantly higher in six of 12 populations 

sampled in 2019-2020, and in three of those estimated genetic integrity status was classified as “bad” 

or “very bad”, whereas in the other three – as “moderate”. It should be noted, that no significant 

temporal changes of HE were observed in four populations with “good” and two with “moderate” 

estimated genetic integrity status.  

The observed pattern of overall decrease of genetic divergence and increase of genetic diversity 

among the recent samples might be shaped by possible gene flow from farmed salmon escapees and/or 

increased straying due to climate change. For example, decrease of genetic divergence among 

Norwegian salmon populations as a result of introgression from farmed stocks was shown in several 

studies (Skaala et al. 2006, Bourret et al. 2011, Glover et al. 2012, Glover et al. 2013, Glover et al. 

2017). On the other hand, genetic diversity increase as a consequence of gene flow from farmed 

escapees contradicts the common knowledge that genetic diversity of aquaculture strains is often lower 

compared to that in wild populations (Ryman and Laikre 1991, Blanchet et al. 2008, Araki and Schmid 

2010) and it is expected that increased introgression of farmed fish will reduce genetic diversity of wild 

populations (Eldridge et al. 2009, Bourret et al. 2011, Jasper et al. 2013). However, farmed escapees 

may carry new alleles not observed in wild population and thus increase genetic variability of wild 

salmon stocks (Verspoor 1998, Skaala et al. 2006), particularly those of small census size. Between-

river migration of adults, or straying, also contributes to increased gene flow among wild populations 
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and may show similar patterns of decreased genetic divergence and increased genetic diversity with 

time. For example, increase of water temperature due to global climate change caused enhanced straying 

in southern European populations (Valiente et al. 2010, Horreo et al. 2011). Thus, we cannot exclude a 

synergistic effect of gene flow from farmed escapees and climate warming shaping the observed 

temporal patterns of genetic variation in northern populations of Atlantic salmon. However, further 

studies required to disentangle factors causing the observed changes of genetic structure and variability. 

 

Candidate SNPs showing large temporal changes 

While the observed changes of genetic variation overall SNPs were modest, we found 54 candidate 

SNPs, which showed significantly high genetic divergence between temporal replicates. However, the 

detected SNPs did not overlap among populations, indicating that various factors, such as genetic drift, 

environmental changes, degree of introgression from famed escapees, selection might have influenced 

temporal variation within geographical locations. On the other hand, the density of SNPs along the 

genome was not high, approximately one SNP per 54,916 bp, and the performed analyses might failed 

capturing temporal variation of non-covered genomic regions. Thus, more thorough analyses of the data 

is required to draw firm conclusions, including outlier tests, detection of runs of homozygosity and 

genome scan using sliding-window approaches. Nevertheless, a large proportion of candidate SNPs was 

found in regulatory regions (5K upstream, 5K downstream and 3’UTR), and only a few SNPs were 

located in protein coding sequences. This observation is corroborated by earlier studies indicated that 

selection predominantly influenced regulatory regions rather than protein coding sequences (Fraser 

2013, Verta and Jones 2019, Fagny and Austerlitz 2021, Ozerov et al. 2022a). 

Interestingly, we observed substantial changes of allele frequencies in vgll3-akap11 gene region 

in three populations. This region is important in controlling age at maturity both in wild and 

domesticated salmon, with non-synonymous mutations in vgll3 gene explained 33–36% of phenotypic 

variation (Ayllon et al. 2015, Barson et al. 2015). For example, Besnier et al. (2022) observed the 

decrease of age at maturity among salmon males in the river Etneelva population, which has been 

strongly affected by farmed escapees for many years. Therefore, we assume that temporal changes of 

allele frequencies at vgll3-akap11 genomic region in the northernmost populations might be also due to 

increased gene flow from escaped farm salmon.  

 

Conclusions 

The observed genome-wide temporal variation in the northernmost populations of Atlantic salmon 

indicated relatively stable genetic population structure in the majority of studied stocks. However, 

certain genomic regions were more variable that the others, particularly in populations of smaller stock 

census sizes, which might indicate both the effects of gene flow from farmed escapees and climate 

changes. Given fast growing and spreading of salmon aquaculture industry towards northern areas of 

Norway and fast increase of mean temperature in Arctic area, the generated genome-wide data will 
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serve as a backbone to study genomic changes of salmon populations in the future. Due to delays caused 

by Covid-19 pandemics, more thorough analyses of the data were not performed in the frameworks of 

the Kolarctic ENPI CBC – CoASal project (KO4178), however, we plan to continue the exploration of 

the generated data in the future. 
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