
Traffic control in a heterogeneous mobile 
tactical network with autonomous platforms

Lars Landmark
Erlend Larsen
Øivind Kure

18/00904FFI-RAPPORT





Traffic control in a heterogeneous mobile
tactical network with autonomous platforms

Lars Landmark
Erlend Larsen
Øivind Kure

Norwegian Defence Research Establishment (FFI) 15 August 2018

FFI-RAPPORT 18/00904 1



Keywords
Eksperimentering
Kommunikasjonsteknologi
Kommunikasjonsprotokoller
Kommunikasjonsnettverk

FFI-rapport
18/00904

Project number
1367

ISBN
P:978-82-464-3020-1
E: 978-82-464-3021-8

Approvers
Espen Skjelland, Research Director
Jan Erik Voldhaug, Research Manager
Bjørnar Libæk, Acting Research Manager

The document is electronically approved and therefore has no handwritten signature.

Copyright
© Norwegian Defence Research Establishment (FFI). The publication may be freely cited where the
source is acknowledged.

2 FFI-RAPPORT 18/00904



Summary

Future military operations will involve autonomous platforms and systems. In order for these systems
to fully achieve their potential, the autonomous platforms need to collaborate. Each platform might
have its own independent role in the autonomous system, but they will all work together to reach the
same common goal. Hence, an efficient military autonomous system will be highly dependent on
a communication network where traffic control is required to better utilize the resources. Through
traffic control, the network can discriminate between several levels of importance, routing traffic along
different performing network paths.

Our motivation for this work was to gain experience with Software Defined Networking (SDN) as
a tool for designing and experimenting with new network functionality in an environment where the
radios are developed for operational use. Our objective was to gain experience by running SDN along
with traditional routing in a heterogeneous network consisting of autonomous platforms. SDN was
used as a tool to employ traffic control, so that we could intercept and further traffic engineer-specific
traffic along with ordinary routing. Different traffic types were forwarded dependent on the capabilities
of the radio networks. Our testbed consisted of different autonomous platforms, i.e. Unmanned
Aerial Vehicle (UAV), Unmanned Ground Vehicle (UGV), and Unattended Ground Sensor (UGS).
An experiment with the testbed was performed at Rygge Aerodrome where most elements of the
testbed were tested, except physical elevation of the UAV platform. Through the experiment, several
challenges were identified.

In collaboration with Kongsberg Defence & Aerospace (KDA), we have implemented and tested
SDN as a tool for traffic control using UAV. SDN with the help of the OpenFlow protocol and the Ryu
SDN controller was installed by KDA on one of their broadband military radio models. Based on
this implementation we could write our own network functionality, and thus easily customize traffic
control. OpenFlow provides us with a tool where we can customize network functionality at a low
cost in terms of coding hours. In our experiment, the traffic was relayed by intermediate nodes, due
to the distance and traffic type, either on the ground or in the air. Military Ultra High Frequency
(300–3000 MHz) (UHF) and Very High Frequency (30–300 MHz) (VHF) frequency bands were used
for connectivity. OpenFlow was used for traffic control within the UHF radio network, and between
the UHF and the VHF radio networks. By using OpenFlow we were able to customize how traffic
should be handled by the network.

This report is mainly written for network designers interested in SDN and autonomous systems in
the tactical domain. The report focuses on design choices in an SDN network and on our observations
in an experimental SDN network.

FFI-RAPPORT 18/00904 3



Sammendrag

Fremtidige militære operasjoner vil innbefatte bruk av autonome plattformer og systemer. For at
disse systemene skal kunne utnyttes fullt ut, må de autonome plattformene samarbeide. Hver
plattform kan ha sin egen uavhengige rolle i det autonome systemet, men for å nå et felles mål
må de arbeide sammen. Et effektivt militært autonomt system vil derfor være svært avhengig av
en kommunikasjonsinfrastruktur hvor trafikkontroll vil være avgjørende for å utnytte ressursene.
Gjennom trafikkontroll kan nettverket skille mellom ulike viktighetsnivåer og rute ulik type trafikk over
nettverksstier med ulik ytelse.

Vår motivasjon med dette arbeidet var å få erfaring med Software Defined Networking (SDN) som
et verktøy for å designe og eksperimentere med ny nettverksfunksjonalitet i et miljø der radioene er
utviklet for operativ bruk. Vårt mål var å få erfaring ved å kjøre SDN sammen med tradisjonell ruting
i et nettverk bestående av autonome plattformer. SDN ble brukt som et verktøy for trafikkontroll. Ved
hjelp av SDN kunne vi fange opp og trafikkstyre data av interesse samtidig som vanlig ruting håndterte
resten av trafikken. Ulike trafikktyper ble videresendt avhengig av radionettverkets muligheter. Vår
testbase besto av forskjellige autonome plattformer: ubemannede luftfarkoster (UAV), ubemannede
landkjøretøy (UGV) og bakkesensor (UGS). Et eksperiment med testbasen ble gjennomført på
Rygge flystasjon hvor de fleste elementene i testbasen ble testet, bortsett fra fysisk elevering av
UAV-plattformen. Gjennom eksperimentet ble det avdekket en rekke utfordringer.

I samarbeid med Kongsberg Defence & Aerospace (KDA) har vi implementert og testet SDN som
et verktøy for trafikkontroll ved bruk av UAV. SDN ble implementert av KDA ved hjelp av protokollen
OpenFlow og Ryu SDN-kontroller. Basert på denne implementasjonen kunne vi skrive vår egen
nettverksfunksjonalitet, og dermed lett tilpasse trafikkontrollen. OpenFlow gir oss et verktøy hvor vi
kan tilpasse nettverksfunksjonaliteten innenfor relativt få kodetimer. I vårt eksperiment ble trafikken
videresendt av mellomliggende noder, på grunn av avstand og trafikk, enten på bakken eller i luften.
Radiobåndene for militær Ultra High Frequency (300–3000 MHz) (UHF) og Very High Frequency
(30–300 MHz) (VHF) ble brukt for sammenkobling av enheter. OpenFlow ble brukt til trafikkontroll
innenfor UHF-radionettverket, og mellom UHF- og VHF-radionettene. Ved å bruke OpenFlow kunne
vi tilpasse hvordan trafikk skal håndteres av nettverket. Dette ble demonstrert ved at spesifikk trafikk
ble omdirigert over UAV.

Denne rapporten er hovedsakelig skrevet for nettverksdesignere som er interessert i SDN og
autonome systemer i taktisk domene. Rapporten fokuserer på designvalg og våre observasjoner i et
eksperimentelt SDN-nettverk.

4 FFI-RAPPORT 18/00904



Contents

Summary 3

Sammendrag 4

Preface 6

1 Introduction 7

2 Software Defined Networking 9
2.1 SDN and Workflow 11

3 Testbed building blocks 12

4 Design choices for our communication network 14
4.1 SDN controller placement 14
4.2 Combining traditional routing and SDN. Where to locate the switch within a node? 15
4.3 Topology discovery 16
4.4 SDN flow rules 16
4.5 Resulting communications testbed 17

5 Experimenting with OpenFlow as a testbed platform 20

6 Conclusion 22

Abbreviations 23

References 24

FFI-RAPPORT 18/00904 5



Preface

The experiment described in this report was part of the final experiment for the Norwegian participants
in the multi-national research project Coalition Network for Secure Information Sharing (CoNSIS)
phase II Task 1. It was a combined effort between the FFI project "Ubemannede kjøretøy for
Forsvaret", Kongsberg Defence & Aerospace (KDA) through their projects on CoNSIS and Robotics,
and the authors, both as part of the FFI project "Taktisk mobil kommunikasjon for Forsvaret" and as
part of the FFI project "Autonomi for ubemmanede systemer".

6 FFI-RAPPORT 18/00904



1 Introduction
An efficient military autonomous system in the future will be highly dependent on a communication
infrastructure facilitating traffic control. With traffic control, we mean the ability to control on which
links to utilize for selected data flow(s) at a chosen time. A communication infrastructure is needed
to interconnect the autonomous entities. The communication infrastructure may consist of multiple
radio networks operating on different frequencies bands and hence, functionality to control where
to forward specific traffic is highly required. Without traffic control, we will not be able to utilize
the available resources. However, functionality for traffic control is not well supported in existing
tactical radio equipment. To advance the research and potential implementation of traffic control in
military radio equipment, tools and concepts such as Software Defined Networking (SDN) should
be investigated. SDN is a concept associated with the benefits of a decoupled control plane and
forwarding plane. A network is built up of routers and/or switches interconnected with network
cables or network radios. Traffic between any two end points require control logic to instruct
how the traffic should be forwarded. The control logic is located in the control plane, while the
actual data is forwarded within the forwarding plane. In a traditional architecture, the control and
forwarding plane are located in each router/switch, while in SDN they are decoupled. That is,
the control plane is moved out from the switches and further placed in an external controller that
enables to control multiple switches. The benefit of the controller is its programmability. Hence,
network functionality can be programmed in the controller.

A benefit of implementing traffic control through SDN and OpenFlow is the flexibility of adding
new functionality in software, given that the software is open. The software is open, i.e., the end
user can write its own policy rules and further apply them to the network, which is often the case
for switches and routers supporting OpenFlow. In our experiment, we used SDN as a tool for
traffic control. Our goal was not to control all data traffic by SDN, but only to redirect a few flows.
The underlying motivation was to use ordinary routing as the primary control engine for traffic
control, but SDN as a tool for redirecting traffic where applicable. Our goal was therefore to redirect
traffic over the UAV if ordinary routing had decided to forward over UGV. In other words, we used
routing functionality implemented by the radio vendor and SDN to traffic engineer specific traffic.
As a consequence, if the SDN controller failed due to an error, and stopped working, the traffic
rules implemented by the controller would stop working, and the standard routing would take over,
although without the desired traffic engineering functions.

Testbeds have long been a popular method for testing new concepts. However, implementing
new concepts onto operational military equipment has historically been difficult, even for small
additive changes. Traffic forwarding through a heterogeneous network is often based on static or
dynamic routing, either with or without routing metrics. In our setting a heterogeneous network is a
network consisting of two radio networks, a UHF and VHF radio network. Traffic control function
could be implemented through traditional router configuration using link weights or through other
functions. However, it could be simpler to implement completely new network functionality,
compared to adapting and forcing traditional alternatives to a new concept. For the experiments
described in this report, we therefore chose to investigate SDN as a new way to implement network
policies. The OpenFlow [1] protocol, an SDN-based standard, provides us with an open Application
Programming Interface (API) towards the network nodes. It is well-suited for policy services. This
way, we are not dependent on getting access to internal radio network software.

Radio network communication requires an interdisciplinary approach between application
writers and network designers. In our case, we used an Unmanned Aerial Vehicle (UAV) as

FFI-RAPPORT 18/00904 7



a network relay between two ground platforms. The UAV is a sparse network resource due to
its limited energy reserves. Hence, there is a need to know how this resource can be utilized
without detailed knowledge of the network topology. Therefore, as a starting point, we planned an
experiment in the field to showcase possible functions, discover pitfalls and learn valuable lessons.
Our contribution in this experiment was the implementation of network functionality to support
network usage policies.

In this report, we describe our network topology and design choices and our experience with
our testbed. The approach chosen, i.e. SDN used for traffic control, was very easy to work with and
easy to understand in our small testbed. The lessons learned through the approach can hence be of
value to others considering using SDN for tactical communication.

This report is organized as follows. In Chapter 2, the concept of SDN is introduced, presenting
generic challenges and design choices for using SDN in mobile tactical networks. In Chapter 3,
the communication building blocks of the testbed are described, and in Chapter 4, an SDN design
discussion for our experiment is presented. In Chapter 5, we provide our observations, before a
conclusion and future work ends the report in Chapter 6.

8 FFI-RAPPORT 18/00904



2 Software Defined Networking
SDN is normally associated with the benefits of decoupling the forwarding plane and the control
plane, an open API and the introduction of a central coordinator. Out of these three, the main
benefit is a decoupled control plane and data plane, contrary to traditional networking. The control
plane is where the routing protocol is running, and the forwarding plane is where the actual traffic is
forwarded within a network node. In traditional Internet Protocol (IP)-networking (Figure 2.1) each
router or switch runs their own local control software (control plane), which further dictates how the
forwarding plane should forward traffic. Each node in the network exchanges control information
with other nodes. This information is further used to build a forwarding table. Hence, each node
calculates its own forwarding plane as a distributed process, according to an algorithm set by the
routing protocol.

In an SDN network (Figure 2.2), the control plane may be moved out from the network node
and further moved into a centralized node called a controller. The controller may control more than
one network node/switch at the same time. Hence, the control plane of the network switches can be
centralized in one node that can control multiple switches at the same time. Each switch keeps the
ability to receive instructions on how to forward traffic. The flow rules on how to forward traffic are
handled through flow tables and group tables within each switch. A flow rule consists of Match
conditions and Actions, which provides a forwarding policy for a particular flow. Match identifies
traffic to be handled by this rule, while Action describes how to handle the traffic. The traffic can be
identified with different granularity, from a more coarse granularity identifying packets by netmask,
to a more fine granularity where a specific packet is identified e.g., by IP source address and the
packet’s unique identification field.

SDN and especially OpenFlow [1] has gained popularity as a tool to enable network automation
and policy enforcement, especially within data centers. It provides an architecture with which
each operator can write customized policy rules depending on time, participants and network
environments. Such functionality would be beneficial also in wireless mobile networks. However,
wireless networks do not have the same characteristics as their wired network counterpart. Wireless
mobile networks often experience topology changes, and links are prone to error. The end equipment
is often designed to be energy conservative and is hence implemented with low Central Processing
Unit (CPU) power. Consequently, there is a tradeoff as to where and how many controllers to be
configured in a tactical network. The decision on the number of controllers and their location
depends on the network size, bandwidth availability, CPU power, controller availability, and the
requirements for network reliability. This report is more focused on how we can experiment
with traffic control using SDN in a military heterogeneous network, and hence program network
functionality.

Tactical military networks will likely see more SDN equipment deployed in the future. The
main reasons are the open API, and decoupled control and forwarding plane. These two features
provide the network owner the ability to design and implement traffic control without access to
vendor proprietary software. Also, in near future we are likely to see solutions for the support of
both traditional routing and SDN technologies within the same routing domain. At present, there
are few solutions for the exchange of state or route information between SDN and legacy routing.
One problem is maintaining consistent forwarding rules as a consequence of forwarding decisions
taken at the IP level (routing) and at the switch level (SDN).

FFI-RAPPORT 18/00904 9



Figure 2.1 Traditional networking architecture, from [2].

Figure 2.2 SDN architecture, from [2].

10 FFI-RAPPORT 18/00904



2.1 SDN and Workflow

Evaluating new ideas typically involves three phases: the design phase, the implementation phase,
and the testing/evaluating phase. Shifting from traditional Linux software routing to OpenFlow
does not provide large benefits in the design phase, but more so in the implementation phase. First,
we could easily experiment with military radio equipment, without necessarily having access to
the development environment (e.g., the radio software and its code library), as this is often vendor
closed. Also, the time spent on implementing functionality is reduced as a consequence of using a
platform independent code library, since this could easily be moved between different platforms.

Controller functionality can be more easily reused and tested within different development
environments. The evaluation of ideas is often performed either by simulation, emulation, testbed,
or in a combination of these. Each development platform has its own libraries and might require
code customized for the specific development environment. SDN and OpenFlow, on the other
hand, provide us with the ability to develop functionality without the need of tailored code for the
specific environments. Hence, by migrating to SDN, we can develop code more independent of the
environment and more easily test the same code within all domains (simulation, emulation, and
testbed).

FFI-RAPPORT 18/00904 11



3 Testbed building blocks
Through the experiment, we tested a flexible communication concept between a deployed ground
sensor and a Ground Control Station (GCS). The test included a UnmannedGroundVehicles (UGVs)
which also had relay capability. In the future, and in our design, UGVs will likely have the ability
to deploy sensors. The deployed sensors, e.g., the Unattended Ground Sensor (UGS), accumulated
sensor data that could be transmitted directly or relayed via an intermittent network node back
to a ground station. Data could be carried over different radio equipment depending on the
distance, capacity requirements and/or other policy rules. We employed two types of platforms,
one ground-based and one elevated. In our experiment, there were three equally equipped ground
platforms, and an additional elevated platform (referred to as an Unmanned Aerial Vehicle (UAV)).
In our case, we carried data over both Ultra High Frequency (300-3000 MHz) (UHF) and Very
High Frequency (30-300 MHz) (VHF) on all ground-based platforms. The UAV was only fitted
with a UHF radio.

The UAV was added to improve the radio coverage, and thus the network stability of the
UHF multi-hop network. Improved stability is achieved due to less link change because of longer
transmission range, and the ability to position the UAV according to communication needs. Improved
capacity is achieved because of improved link stability due to Line-of-Sight (LoS), and thus less
packet loss due to low link quality. In a generic network, the UAV would have a larger interference
range, and thus could reduce the network throughput due to reduced spatial reuse.

Our testbed communication infrastructure (Figure 3.1) consisted of two different types of mesh
radios, one narrowband radio (VHF), and one broadband radio (UHF). The main differences
between the two radios were the longer range and the lower data-rate for the narrowband radio. The
three ground nodes were equipped with both radios, while the UAV was only equipped with the
broadband radio, due to weight constraints. Our experiment was based on a radio family close to
the radios used by the Norwegian Army for the VHF band. The Multi-Role Radio (MRR) radio
system is used within the Norwegian Armed Forces (NAF) for communication. The manufacturer
of the radio, Kongsberg Defence & Aerospace (KDA), produces two versions of this radio, one
for the NAF, and one for the international market. In our experiment, we used an international
version of the MRR radio. The main difference between the national and international version is
the security implementation. We also used a radio not procured by the Norwegian Army produced
by KDA operating in the UHF band named WM600, UM600, and SR600, commonly referred to as
the KDA TacLAN radio suite.

KDA installed a standard Open vSwitch (OVS) bridge in their UHF radio within this project.
The OVS is a software switch with SDN support. The OVS bridge transfers the Medium Access
Control (MAC) layer packets to and from the IP routing process. The OVS implementation comes
with the support of OpenFlow version 1.3. Thus, it was a simple operation to retrofit OpenFlow into
an existing military radio platform. The code from the experiment is available in an FFI-internal
document [3].

12 FFI-RAPPORT 18/00904



Figure 3.1 Experiment components and communications. Dashed lines indicate presumed unreliable
links.

FFI-RAPPORT 18/00904 13



4 Design choices for our communication network
The overall goal of the experiment was to use SDN for traffic control and run it alongside traditional
routing. The combination of SDN and traditional routing give us flexebility to customize traffic
control for all or some traffic if required. SDN was used as a tool to employ traffic control rules,
so that we could intercept and control specific traffic flows while ordinary routing was running.
Different traffic types were forwarded dependent on the capabilities of the radio networks. Hence,
customized policy rules were written per radio. In this chapter, we discuss our SDN design choices.
Our network equipment consisted of a combination of SDN-enabled hardware and legacy hardware
not supporting SDN with limited computational capability. Because of our hardware combination
and traffic engineering goal, we needed to address four problems, presented in the following
subchapters:

1. SDN controller placement
2. Combining traditional routing and SDN
3. Topology discovery
4. SDN flow rules

4.1 SDN controller placement

In the literature, the design of SDN is often illustrated with one controller, controlling multiple
switches at the same time. However, a large network can usually not be operating with one controller
alone, due to a number of reasons, e.g.: the traffic load on the controller, the delay between the
network switch and the controller, and robustness in case of controller failure. A central controller
in mobile wireless radio networks will most likely not scale, and thus is considered less applicable.
There are a number of problems associated with the concept of a central controller in wireless
mobile radio networks. The first problem is the availability of a central controller, due to mobility,
partitioning and, last but not least, error prone links. Transmission failure is more common within
normal operation in wireless environments than in wired networks. A central controller receives
and sends all signaling traffic. This design require certain control on the delay from switch and
controller and back, and the volume of the signaling traffic. In the wired domain, SDN is typically
deployed with the SDN control traffic being Out-of-Band, using separate Ethernet ports and links
(i.e., a separate network) to connect forwarding devices to the controller and exchange control traffic.
In this setting, SDN control traffic will not compete with data traffic, and hence the delay and the
traffic volume is defined. In the wireless domain, data and signaling traffic would typically operate
In-Band due to the lack of a dedicated radio system. The result is that the control traffic delay is
less predictable since it is influenced by additional factor such as data traffic and the wireless link
quality compared to the wired domain. Furthermore, a central controller sees all control traffic.
That is, the controller is either source or destination for all control traffic. Hence, the control traffic
will add to the problem of congested channel as approaching the central controller. Concentrating
all control traffic on one wireless channel makes SDN with a central controller less scalable and
predictable in the wireless domain.

Although a centralized controller sees one topology, the switches will move and have temporarily
misconnections to the controller. The environment is changing rapidly in mainly three dimensions:
topology, offered traffic and available resources to forward traffic. In order for a controller to
calculate accurate and consistent forwarding decisions, the controller would need accurate topology

14 FFI-RAPPORT 18/00904



information consistent with the other controllers. Furthermore, the controller also needs to ensure
that the validity time is within the projected validity time of the present topology information.
Hence, a plausible implementation is to implement network rules with a hard expiration time
according to the expected network change. The timer can be implemented in the controller or in
the switch. In the case of controller implementation, the benefit is reduced control traffic. The
drawback is that the controller will run the chance of not reaching the switch, either in the case
of lost control packets (a logically partitioned network/path error) or in the case of a physical
partitioned network. A time limited rule in the switch will allow for the possibility of searching for
an available alternative controller in case of lost connectivity to a controller, at the cost of a higher
amount of signaling traffic.

We chose to run one controller at each ground platform (GCS/UGV/UGS) due to the problem
of state exchange between the controllers and the computational capacity/CPU clock frequency at
the UHF radio. Initially, we ran a controller on each UHF radio on each ground platform, but it was
seen early that the radio could not offer the computation resources required to process rule changes.
Hence, the Operating System (OS) caused a backlog which again caused packet loss. Our SDN
switch (OVS-switch [4]) on the UHF radios was configured to send packets without a matching rule
up to the controller. In case a burst of packets arrived to the switch, all packets were sent up to
the controller and the controller had to process each of them individually, which is CPU intensive.
Our SDN controller did not block or buffer successive packets while processing the first packet,
including installing rules.

Our controllers were running isolated, and installed flow rules independent of the state of the
other controllers. A consequence of running multiple controllers is that the controllers might have
different topology views, for instance due to a lost topology packet. This problem is not specific for
SDN running multiple controllers, but general to distributed routing protocols. In an architecture
using a central controller, we would have one topology view and calculate paths accordingly. In
case of a lost topology packet, the consequence would be that the links would not be used.

4.2 Combining traditional routing and SDN. Where to locate the
switch within a node?

IP routing was the main forwarding engine in our experiment, and thus SDN was only used for
traffic engineering where the SDN policy did not match the IP forwarding. Our goal was therefore
to send traffic up to the routing layer, and further intercept and eventually change IP forwarding
decisions. In our test, the protocol Wireless Open Shortest Path First (WOSPF) [5] was used for
routing. Hence, we needed to install our software switch after IP routing. Figure 4.1 shows the
forwarding path within the UHF radio nodes supporting both routing and SDN. The interface
eth0 was located on the wired network, while uhf0 was our UHF radio interface. The OVS bridge
(software switch) was installed between uhf0 and IP/Linux routing. In our case, our OVS switch
was installed with two port entries. One connected to the UHF radio interface uhf0 and the second
port to the IP routing. The default operation was to forward packets between the two ports. Hence,
if no SDN rules were installed, the OVS switch did not change the traffic forwarding. In order to use
SDN to redirect traffic, traffic rules were to be installed dictating traffic to be sent up to the controller.
By this design, we were able to write policy usage rules for traffic within the UHF network.

Within the UHF radio network the traffic was classified into two classes. The first class was
forwarded by traditional routing WOSPF, while the second class was intercepted and forwarded
by SDN in case the SDN forwarding and the traditional routing did not match. The intercepted

FFI-RAPPORT 18/00904 15



Figure 4.1 The packet forwarding path within the UHF radios.

traffic forwarded by SDN was calculated by shortest path between the controllers. In our case, the
static policy was set to prefer the UAV, as it was assumed more reliable, at the cost of increased
interference at the ground. A consequence of this policy was an added likelihood of increased path
length in those cases where traditional routing suggested a shorter path, resulting in higher resource
consumption.

4.3 Topology discovery

In our test, we did not have any SDN controller controlling more than two switches, but we had
more than one controller. In the SDN architecture, the Link Layer Discovery Protocol (LLDP)
and the Broadcast Domain Discovery Protocol (BDDP) are the two topology discovery protocols
often cited within the SDN literature. In SDN, the switches are known by the controller, but the
links among the switches are not initially known. In general, the LLDP and BDDP both send link
discovery messages on each port announcing their switch ID. The receiving switches report back to
the controller on which port/interface the message was received. Based on this information, the
controller can build up a topology view that may, for instance, be used for calculating shortest path.

In our experiment, we ran multiple controllers and required topology discovery among the
controllers, but not among the switches. Consequently, neither the LLDP nor the BDDP were
applicable for our testbed. Instead, we found it more time efficient to implement our own topology
discovery method within SDN. The cost was higher bandwidth consumption over UHF, compared to
gaining access to the WOSPF topology database. Our topology messages were only sent over UHF
radio, due to limited bandwidth over the narrowband radio system (VHF). We only redirected traffic
within the UHF radio network. Thus, it was not required to send control messages over VHF radio.
As a consequence, our testbed ran two topology control modules: WOSPF and our custom written
topology discovery daemon. WOSPF was running in the background and its topology database
ought to have been used for route calculation for both WOSPF and SDN. Software to acquire and
read the Quagga WOSPF topology database has later been written in a master assignment [6]. One
of the author’s observations was that it would require extensive knowledge of the deployed routing
protocol to gain access to read topology information.

4.4 SDN flow rules

In our testbed, we had one deployed sensor delivering a wide-angle image, zoom images, and
telemetry. The different traffic flows had different network requirements and were thus marked with
different IP Differentiated Services Code Point (DSCP), (DSCP value 10, 20 and 30).

Due to the problem of mobility and stale links, we decided to implement the SDN rules with
a hard timeout, at the cost of higher load on the controller. As earlier mentioned, we were aware
of the limited CPU power of the UHF radio, but nevertheless initially implemented an onboard
controller controlling only the onboard UHF radio switch. It resulted in many packets sent up to the

16 FFI-RAPPORT 18/00904



controller before the controller was able to set flow rules. This resulted in approximately 20 packets
being sent up to the controller at each rule timeout, and thus clearly showed throughput variance.
As a solution to the problem, we had three design alternatives:

1. Extend the timeout at the cost of added time to detect stale links.
2. Implement a stateful link state. In case the topology discovery detected a link change, the

rules associated with the stale path/link were changed. This solution was tested (in lab) and
resulted in more stable throughput at the cost of added code/state complexity.

3. Keep our initial hard timeout and introduce an external controller with sufficient CPU power
directly connected on the platform Local Area Network (LAN) (Figure 4.3). This became
our design choice, due to a more simple and clean design, compared to the previous stateful
design.

Our design for redirecting the traffic was based on rewriting the packet’s MAC destination
address. In cases where the traditional routing within the UHF radio (Figure 4.1) found the UGV as
the next hop, and our SDN control logic found a path through the UAV, the computer Ryu-controller
installed a rule to forward traffic up to the UAV by rewriting the packet MAC destination address on
UHF radio OVS-switch. As a result, we were not dependent on Address Resolution Protocol (ARP)
support in our SDN code. In traditional routing, IP packets are redirected by next hop IP address
and hence sent down to ARP. ARP is then responsible for assigning the MAC address to the IP
packet associated with the next hop IP address. In our testbed, we knew the next hop MAC address
(acquired by the topology discovery daemon), and could rewrite the packet’s MAC addresses
without involving ARP. Operating in environments involving legacy switches and SDN switches
requires rewriting both the source and the destination MAC addresses. Otherwise, there is a risk of
altering the state in the legacy switch, resulting in incorrect switching of data packets.

OpenFlow prevents traffic from being sent out on the arriving port. Our computer, where the
Ryu-controller was installed, consisted of one Ethernet-interface and one installed OVS-switch.
The goal was to rewrite the MAC addresses and thus send the packet out on the same port as it
arrived. In our case it meant that packets arriving on the Ethernet-interface were sent up to the
connecting port on the OVS-switch. The OVS-switch then rewrote the MAC-destination address
before sending the packet out on the same arriving port down to the Ethernet-interface. OpenFlow
does not allow packets being sent out on the arriving port ([4] Section B.6.3 IN PORT Virtual Port
page 105), but it supports virtual ports on the same physical interface, allowing the same packets to
be sent over the virtual interface associated with the incoming physical interface.

Our design was prone to routing loops caused by SDN and the native routing protocol pointing
at each other. The UHF and VHF radio networks were connected by our SDN traffic control module.
Both the UHF and the VHF radio networks ran routing protocols, exchanging information about
reachable subnets and their routing cost. Thus, when the VHF routing protocol was made aware that
a destination was reachable through the UHF network, it would bounce the packets to this subnet
back towards local UHF radio, thereby overriding the SDN forwarding decision. Our solution to
this was to turn off routing on the Ethernet interfaces of both radio types (the wired network side)
and perform SDN switching within the wired domain.

4.5 Resulting communications testbed

This section describes our resulting communication testbed, including the communications network,
the platforms and the internal connectivity on each platform. A more detailed description on the

FFI-RAPPORT 18/00904 17



code design, and the code itself, is available in an FFI internal document [3].
Looking closer at the communication infrastructure in our experiment (Figure 4.2), each of the

ground nodes included a computer running an SDN controller and an OpenFlow-capable switch. A
simple learning switch, denoted X, interconnected the controller, the terminals and the (UHF/VHF)
radios. Furthermore, each of the UHF-radios ran an OpenFlow-capable switch. The elevated node
operated only over UHF.

Figure 4.3 shows our communication configuration for the stationary ground platforms. Due to
practical issues, the switch denoted X in the center of the figure was a standard learning switch,
while the two SDN-controlled OVS-switches were placed on the UHF-radio and in the computer.

The Application computer was a computer performing application tasks outside of the network,
such as collecting, processing and exchanging sensor information. The Application computer was
configured with a default route entry to the Ryu-controller located on the Computer.

The Computer ran the Ryu-controller software [7]. The Computer was operating as the
platform’s SDN controller and controlled two OVS switches: one on board the Computer and one
onboard the UHF-radio. The Computer’s OVS-switch was responsible for switching traffic between
the UHF and VHF networks, and hence forwarded traffic to the UHF or the VHF radio. This
instruction was installed into the OVS-switch on the Computer by the Ryu-controller. The UHF
switch was used to traffic engineer traffic over the UHF radio network.

The application computer was responsible for collecting sensor information. The sensed
information was further marked depending on the information, and forwarded towards the computer
as the next IP hop. The traffic was marked by changing the DSCP value in the IP header and used
for traffic control. Three DSCP values were used; DSCP value of 10 was used for VHF traffic, 20
and 30 was used for UHF traffic, while 30 was used for UAV.

The central traditional switch denoted X was selected because of practical issues. We had two
options: SDN or a legacy switch. A legacy switch was chosen instead of an SDN switch, due to
our SDN-switch’s out-of-band control channel architecture and the single Ethernet port available
on the controller. (The Computer which ran the controller also needed to communicate with the
switch on the UHF-radio, not only communicate with the central switch.) In the SDN architecture,

GCS

UHF

VHF

X

Computer

192.168.1.23/24

192.168.23.50/24

192.168.23.60/24

192.168.23.51/24

UAV

UHF

192.168.1.25/24

192.168.25.50/24

Application 
computer

192.168.23.11/24 UGV

UHF

VHF

X

Computer

192.168.1.24/24

192.168.24.50/24

192.168.24.60/24

Application 
computer

192.168.24.10/24

192.168.24.51/24

UGS

UHF

VHF

X

Computer

192.168.1.26/24

192.168.26.50/24

192.168.26.60/24

Application 
computer

192.168.26.10/24

192.168.26.51/24

Figure 4.2 The network architecture.

18 FFI-RAPPORT 18/00904



Computer

OVS-
switch

IP-
routing

Eth0

UHF-radio

OVS-
switch

IP-
routing

Eth0 Uhf0

Ryu-
controller

Application computer

Eth0

X

VHF-radio

Vhf0Eth0 IP-routingIP-routing

Figure 4.3 The ground node communication architecture.

out-of-band is normally used for the control traffic between the switch and the controller when
using traditional routing. A typical design is to assign one or more ports/interfaces with traditional
control layer software. That is, one or more ports on a switch keeps a traditional control layer
implementation such as spanning tree enabling the switch to connect to the controller after bootup.

If we were to use the SDN switch, we had to either have two interfaces on the computer, which
we did not have, or arrange it with Virtual Local Area Network (VLAN). Our solution was instead
to install an OVS-switch and the Ryu-controller on the computer and route all traffic towards this
node.

FFI-RAPPORT 18/00904 19



5 Experimenting with OpenFlow as a testbed platform
Moving from designing and implementing solutions to experimenting with the resulting code was
in itself a learning experience. Several of the design choices described in the previous chapter are
results of the testbed work in a laboratory environment with a radio network topology emulator. The
first tests were focused on confirming the topology discovery functionality. Next, we evaluated the
correctness of 1) setting traffic rules in each switch, 2) the traffic load generated by these rules, and
3) the communication between the switch and the controller. At this stage, the traffic was generated
using mgen scripts [8]. After establishing the proper behaviour by the controllers and the switches,
traffic from the actual applications was introduced. Recorded application data was available, so the
system could be tested with data played back in real time. The final experimentation was performed
at Rygge Aerodrome, where the applications and platforms were deployed outdoors, producing real
data.

The results presented in this chapter focus on the final experiment, where the design choices had
been established, and most – but not all – bugs had been sorted out. In summary, the implemented
code worked as expected, except for one bug which triggered erroneous traffic rerouting in the legacy
switches. Two issues that were unrelated to the SDN software did also present some challenges.
They are elaborated on below.

Using Wireshark [9], we were able to confirm that the traffic generated with a DSCP value of
10 was forwarded with help of SDN over the MRR radio network (VHF). The traffic types were
identified by the logs, and showed that packets that were received on either the GCS or the UGS
platforms with a DSCP value of 10 were forwarded via the MRR radio network. Packets with a
DSCP value different from 10 were forwarded via the UHF radio network (WM-600 radio).

We were also able to confirm that traffic with a DSCP of 30 was routed over the UAV according
to the design. However, we were not able to confirm the behavior of routing packets marked with
DSCP of 30 over the UAV, while the other traffic was routed over the UGV. In our network design,
we expected two hops within the UHF radio network: one path over the UGV and another over the
UAV. While this topology occurred during our experiment, it was not stable, due to dynamic routing.
Some control messages were transmitted further than assumed, and as a result established a time
varying topology switching between 1-hop and 2-hop between the UGS and the GCS. Consequently,
instead of having two 2-hop paths (one over the UAV and one over the UGV) the 1-hop connection
was often used.

The time varying topology switching between 1-hop and 2-hop presented us with an unexpected
topology, and also an unwelcome link flapping. To some degree, this was a product of the lack of
an elevated node (elevated high enough). This led to elaborate "tuning" of the radio parameters,
where the expected relays (the UAV and the UGV) had to be configured with a more robust link
rate than the end nodes (the UGS and the GCS). The most important and problematic link was
that of the direct link between the UGS and the GCS. This impacted the routing protocol on the
UHF-radios, resulting in periodic link loss and rerouting with a considerable timeout (∼40 s). Link
flapping and/or link stretching is a familiar observation in radio networks. Routing protocols built
on shortest path will prefer a 1-hop path over a 2-hop path. Normally, it is better to route traffic
over a less reliable 1-hop link than over a 2-hop path. However, in situations where a 2-hop path is
reliable, but a 1-hop links is going up and down, shortest path routing will often switch back to the
1-hop path if possible. In such situations, a link might be inserted into the forwarding table, but
cannot be used for data forwarding. As a result, traffic will not reach the destination before the link
times out, and the 2-hop path is selected. During the lifetime of the 1-hop link, the capacity of

20 FFI-RAPPORT 18/00904



the path between source and destination is thus reduced. This problem was not addressed by us
in advance, but we could have mitigated the problem by our traffic engineering mechanisms. As
manual operator we trusted our UAV over both 1-hop (direct link), and 2-hop via UGV, and could
therefore redirect eligible traffic over UAV. This problem is often mitigated by solutions such as the
Expected Number of Transmissions (ETX) routing metric. Combining a routing metric and traffic
engineering involving humans could be preferable in our situation.

When analyzing the log files after the conclusion of the experiment, some unexpected behavior
was discovered: the controller computer at the UGS had received numerous packets destined to
the UGS application computer. The computers at the UGS were interconnected using a simple
MAC-switch. However, the SDN code that was implemented for forwarding traffic from the sensor
application computer to the MRR radio did not change the MAC source address for packets relayed
from the controller computer to the MRR radio. The result was that every time the controller
computer at the UGS forwarded a packet to the MRR radio, the traditional switch updated its MAC
address mapping to point to the controller computer for the sensor application computer MAC
address. Traditional switches are self-learning, and store which ports to reach which packet sources.
We did not rewrite the MAC source, but only the destination and hence, the switch did point back to
the last node it received this MAC address which was our controller node and the SDN switch. As
a consequence, the computer became a black hole for traffic coming from the radios to the sensor
application computer. Packets that were not SDN switched but received from the same source would
correct the switch mapping, since these packets were routed normally by the controller computer
included setting a new MAC source address.

Our Kongsberg TacLAN (WM/UM/SR600) radios were fitted with a software version optimized
for a single-sender scenario. It was made to work better with video transfer, and thus the MAC
retransmissions functionality was switched off. Furthermore, the radio was configured so that it
discarded the packet ready for transmission if the medium was found to be "busy". This posed a
problem, both in a relay situation and in a bidirectional transmission situation, and the configuration
was disadvantageous in our setting. Our application computer was delivering large segments of data
resulting in fragmentation. In a relay situation and bursty traffic due to large packets fragmented
to fit the Maximum Transmission Unit (MTU), the second fragment from the source would likely
coincide in time with the relay’s transmission of the first fragment. With the current radio MAC
behavior, one of the fragments would be discarded, leaving the destination lacking this fragment.
Without an end-to-end transmission protocol that takes responsibility for retransmission, the entire
data segment would be lost. On recommendation from KDA, a fix was implemented which delayed
the transmissions from the expected relay nodes by 100 ms±50 ms. In the lab, this implementation
gave some wanted effect, in that the packet loss was reduced. In essence, this fix reduced the
collision probability and thereby reduced the packet loss at the cost of throughput. The cost of
throughput was that the maximum transmission rate was reduced. The problem of discarding
packets if the medium was found "busy" was not handled and if lost packet was detected based on
missed acknowledgment, nothing was done.

As a consequence of radio problems, our planned performance tests were discarded. As an
end result we were able to control traffic while combining traditional routing and tailored traffic
forwarding using SDN and OpenFlow in a heterogeneous network. Traffic was initiated by the
application node and sent by a default route towards the computer running SDN. Traffic was then
routed and sent back with new destination mac address depending on being traffic for UHF or VHF
network. Traffic sent to the UHF network and filtered for preferred UAV was also verified to be sent
over the UAV.

FFI-RAPPORT 18/00904 21



6 Conclusion
With the emergence of autonomous platforms and sensors in the Norwegian Armed Forces, traffic
engineering should be employed to more effectively exploit the already limited network resources.
In the experiment traffic engineering was sought done using Software Defined Networking (SDN)
instead of by traditional routing metric control. OpenFlow and the Ryu-controller was installed
onto Kongsberg military radios in collaboration with KDA, so that we could write our own software
for traffic control. As a result, we implemented traffic control software on a generic platform (the
Ryu-controller), that was further used on all the ground platforms, as well as on the UAV.

In this experiment we gained experience with running SDN along with traditional routing in a
small tactical network consisting of autonomous platforms. It worked as expected and is a viable
solution for further studies operating in a larger network. Ordinary military radios were running
traditional traffic forwarding, but were in addition configured with SDN used for intercepting and
rerouting traffic in case a local decision found it more suitable. The benefit of this design is the
failover mechanism, i.e., if the SDN controller stopped working, the standard routing protocol
would still be functioning, although without the desired traffic engineering functions.

Our experience with SDN and wireless mobile networks is that it is less suitable compared to
SDN within the wired domain. The main reasons are availabe link data rate and CPU capacity and
path reliability. The combination of our OpenFlow 1.3 implementation, low CPU capacity, low
link capacity and path reliability made us to reduce the distance, in number of hops, between the
switches and the SDN controller.

Through our work, we have seen that implementing new network functionality is relatively easy
and may reduce the implementation time. Thus SDN may also be a powerful tool when working
with traditional locked-in radios where altering the network behavior depends on the vendor’s
cooperation. By using SDN, we were able to access the data flow plane in order to control the
traffic, without requiring direct access to the radio software. Nor did we require recompilation or
reinstallation of the software for each incremental test. Hence, SDN was beneficial in terms of
testing new functionality within ordinary military radio equipment.

22 FFI-RAPPORT 18/00904



Abbreviations
API Application Programming Interface

ARP Address Resolution Protocol

BDDP Broadcast Domain Discovery Protocol

CoNSIS Coalition Network for Secure Information Sharing

CPU Central Processing Unit

DSCP Differentiated Services Code Point

ETX Expected Number of Transmissions

GCS Ground Control Station

IP Internet Protocol

KDA Kongsberg Defence & Aerospace

LAN Local Area Network

LLDP Link Layer Discovery Protocol

LoS Line-of-Sight

MAC Medium Access Control

MRR Multi-Role Radio

MTU Maximum Transmission Unit

NAF Norwegian Armed Forces

OS Operating System

OVS Open vSwitch

SDN Software Defined Networking

UAV Unmanned Aerial Vehicle

UGS Unattended Ground Sensor

UGV Unmanned Ground Vehicle

UHF Ultra High Frequency (300-3000 MHz)

VHF Very High Frequency (30-300 MHz)

VLAN Virtual Local Area Network

WOSPF Wireless Open Shortest Path First

FFI-RAPPORT 18/00904 23



References
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[2] E. Sørensen, “SDN used for policy enforcement in a federated military network,” Master’s
thesis, Norwegian University of Science and Technology, Department of Telematics, 2014.
[Online]. Available: https://brage.bibsys.no/xmlui/handle/11250/263070

[3] L. Landmark, E. Larsen, and Ø. Kure, “Traffic control in a heterogeneous tactical network using
SDN: code listings,” Norwegian Defence Research Establishment (FFI), FFI-notat 17/16390,
2017.

[4] Open Networking Foundation, “openflow-switch-v1.3.1,” 2012. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.3.1.pdf

[5] K. Holter, A. Hafslund, F. Y. Li, and K. Øvsthus, “Design and implementation of wireless
OSPF for mobile ad hoc networks,” in Scandinavian Workshop on Wireless Ad-hoc Networks
(ADHOC 06), 2005.

[6] H. M. Fagervoll, “SDN in Heterogeneous Mobile Tactical Networks,” Master’s thesis,
Norwegian University of Science and Technology (NTNU), 2017. [Online]. Available:
https://daim.idi.ntnu.no/masteroppgave?id=16953

[7] Ryu. Accessed 04-May-2017. [Online]. Available: http://osrg.github.io/ryu/

[8] Multi-Generator (MGEN). Last accessed: 2017-05-10. [Online]. Available: http:
//www.nrl.navy.mil/itd/ncs/products/mgen

[9] Wireshark. Accessed 2017-12-06. [Online]. Available: https://www.wireshark.org/

24 FFI-RAPPORT 18/00904

http://doi.acm.org/10.1145/1355734.1355746
https://brage.bibsys.no/xmlui/handle/11250/263070
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://daim.idi.ntnu.no/masteroppgave?id=16953
http://osrg.github.io/ryu/
http://www.nrl.navy.mil/itd/ncs/products/mgen
http://www.nrl.navy.mil/itd/ncs/products/mgen
https://www.wireshark.org/


About FFI
The Norwegian Defence Research Establishment (FFI)  
was founded 11th of April 1946. It is organised as an  
administrative agency subordinate to the Ministry of  
Defence.

FFI’s mIssIon
FFI is the prime institution responsible for defence  
related research in Norway. Its principal mission is to  
carry out research and development to meet the require-
ments of the Armed Forces. FFI has the role of chief  
adviser to the political and military leadership. In  
particular, the institute shall focus on aspects of the  
development in science and technology that can  
influence our security policy or defence planning.

FFI’s vIsIon
FFI turns knowledge and ideas into an efficient defence.

FFI’s chArActerIstIcs
Creative, daring, broad-minded and responsible. 

om FFI
Forsvarets forskningsinstitutt ble etablert 11. april 1946.  
Instituttet er organisert som et forvaltnings organ med  
særskilte fullmakter underlagt Forsvarsdepartementet. 

FFIs Formål
Forsvarets forskningsinstitutt er Forsvarets sentrale  
forskningsinstitusjon og har som formål å drive forskning  
og utvikling for Forsvarets behov. Videre er FFI rådgiver  
overfor Forsvarets strategiske ledelse. Spesielt skal  
instituttet følge opp trekk ved vitenskapelig og  
militærteknisk utvikling som kan påvirke forutsetningene  
for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs vIsjon
FFI gjør kunnskap og ideer til et effektivt forsvar.

FFIs verdIer
Skapende, drivende, vidsynt og ansvarlig.

FFI’s organisationFFI’s organisation



Forsvarets forskningsinstitutt
Postboks 25 
2027 Kjeller

Besøksadresse:
Instituttveien 20
2007 Kjeller

Telefon: 63 80 70 00
Telefaks: 63 80 71 15
Epost: ffi@ffi.no 

Norwegian Defence Research Establishment (FFI)
P.O. Box 25
NO-2027 Kjeller 

Office address:
Instituttveien 20 
N-2007 Kjeller 

Telephone: +47 63 80 70 00 
Telefax: +47 63 80 71 15 
Email: ffi@ffi.no


	Summary
	Sammendrag
	Preface
	Introduction
	Software Defined Networking
	SDN and Workflow

	Testbed building blocks
	Design choices for our communication network
	SDN controller placement
	Combining traditional routing and SDN. Where to locate the switch within a node?
	Topology discovery
	SDN flow rules
	Resulting communications testbed

	Experimenting with OpenFlow as a testbed platform
	Conclusion 
	Abbreviations
	References



