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Summary 

Commercial mobile technology has transformed the way we produce and consume information. 

Smart devices like phones, tablets, watches and even TVs, are all the time inter-connected 

through networks. These devices are packed with sensors and apps that allow us to easily 

collect and share instantly all types of data. Not surprisingly, many have realized that this 

technology could bring important innovations also in a military setting, and various projects have 

been started to explore the potential applications. Being able to report, aggregate, share and 

visualize important information in real-time just by downloading an app, is undoubtedly an 

attractive idea. Furthermore, the current interest in adopting LTE for military communications 

would make the case for using smartphones even more pressing. 

Security is often presented as a main obstacle because commercial products cannot meet strict 

military security requirements without some additional hardening. Defining how this should be 

done is not trivial, especially if the same product is to be used in a variety of situations. The 

result is either that security is left as an after-thought yielding insecure products, or that 

commercial technology is advised against to be on the safe side. The reality is that smart 

devices do offer a wide range of security mechanisms, but the protection they can provide 

depends heavily the way they are used. That is why one should rather assess whether the 

operative effect gained by using them outweighs the potential risks on a case-by-case basis, 

and develop solutions that are secure enough for the specific situation. This kind of risk analysis 

should be based on a clear understanding of which assets (information) are to be protected and 

for how long, and the consequences of failing to do so. Once this is established, it is possible to 

determine whether the security mechanisms available can provide adequate protection or not, 

possibly by employing additional mitigation strategies.   

With this report we want to place commercial smart mobile technology in a clearer security 

perspective and understand which threats they are best suited to protect against. First we give 

an extensive overview of the security models of the most popular mobile platforms on the 

market, namely Android, iOS, Windows and BlackBerry, and the security mechanisms they 

implement. We then review publicly available reports, statistics and documentation that show 

how effective these mechanisms are in a consumer market setting. Despite alarming reports of 

newly discovered vulnerabilities and malicious applications, it is in fact only a very small 

percentage of active devices that are affected. In many cases, the users are to blame because 

they intentionally deactivated or bypassed the security features that could otherwise protect 

them. Naturally, there are some threats that these mobile devices still cannot mitigate, but 

significant security is in place and is improving continuously. Efforts to create dedicated devices 

with military grade security based on commercial mobile platforms are also ongoing, showing 

that commercial grade security can provide acceptable protection also in a military environment 

thanks to the stricter control on both equipment and users. Dedicated management tools, 

careful data management and additional security technology like smartcards could further 

reduce the risk of compromise and thus expand the range of scenarios where this technology 

can be adopted and make a substantial difference.   
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Sammendrag 

Kommersiell mobilteknologi har endret måten vi produserer og bruker informasjon på. Smarte 

enheter som telefoner, nettbrett, klokker og til og med TV er hele tiden sammenkoblet gjennom 

mobil- eller internett. Enhetene er fullpakket med sensorer og apper som lett lar oss samle og 

dele alle mulige typer data i sanntid med hvem vi måtte ønske. Ikke overraskende er det flere 

som mener at denne teknologien også kan ha spennende militære anvendelser, og det er 

allerede i gang mange prosjekter som utforsker forskjellige muligheter. Å kunne rapportere, 

sammenstille, dele og visualisere viktig informasjon i sanntid bare ved å laste ned en app, er 

utvilsomt en attraktiv idé. Til og med LTE, den kommunikasjonsstandarden som i dag brukes av 

de fleste smarttelefonene, er under vurdering for mulig militær bruk. 

Sikkerheten er imidlertid ofte sett på som en potensiell hindring. Problemet er at militære 

sikkerhetskrav er så strenge at kommersielle produkter ikke alltid kan møte dem uten noe ekstra 

tilpasning. Dette kan være vanskelig å få til i praksis, spesielt hvis samme produkt skal være 

sikkert uansett situasjon. Konsekvensen er enten at sikkerhetsutfordringer bevisst ignoreres i 

håp om at de vil kunne løses i etterkant, eller at all bruk av kommersielle produkter frarådes for 

å være på den sikre siden. Realiteten er at smarte enheter tilbyr et bredt spekter av 

sikkerhetsmekanismer, men beskyttelsen de kan gi er svært avhengig av måten de brukes på. 

Man bør derfor vurdere om den operative effekten som oppnås i et konkret scenario er større 

enn den potensielle risikoen, og utvikle tilpassede løsninger som er sikre nok for den 

situasjonen. Denne typen risikoanalyse bør være basert på en klar forståelse av hvilken 

informasjon som skal beskyttes, hvor lenge den skal beskyttes og konsekvensene av 

kompromittering. Når dette er klargjort, vil det være mulig å finne ut om de tilgjengelige 

sikkerhetsmekanismene kan gi tilstrekkelig beskyttelse eller ikke, muligens ved å igangsette 

flere risikoreduserende tiltak. 

Denne rapporten setter kommersiell mobilteknologi inn i et sikkerhetsperspektiv, og gjør det 

lettere å vurdere i hvilke situasjoner slik teknologi kan brukes. Først gir vi en omfattende 

oversikt over sikkerhetsmodellene til de mest populære mobile plattformene på markedet, 

nemlig Android, iOS, Windows og BlackBerry, og en oversikt over truslene de er tenkt å 

beskytte mot. Deretter gjennomgår vi offentlig tilgjengelige rapporter, statistikker og 

dokumentasjon som viser hvor effektive disse mekanismene er i et forbrukermarkedsperspektiv. 

Til tross for alarmerende rapporter om nylig oppdagede sårbarheter og ondsinnede apper, viser 

det seg imidlertid at det er en svært liten prosentandel av aktive enheter som faktisk er berørt. I 

mange tilfeller er det brukernes egen skyld fordi de bevisst deaktiverer eller omgår 

sikkerhetsfunksjonene som ellers kunne ha beskyttet dem. Naturligvis er det noen trusler som 

disse mobile enheter fortsatt ikke kan håndtere, men mye av sikkerheten er allerede på plass og 

blir stadig bedre. Forsknings- og industrimiljøer jobber også intenst med å utvikle enheter for 

militære formål basert på kommersiell teknologi. Administrasjonsverktøy, tilpasset 

datahåndtering og annen sikker teknologi som smartkort kan redusere risikoen for 

kompromittering ytterligere. Dermed kan denne teknologien tas i bruk i et større utvalg av 

scenarioer og gjøre en betydelig forskjell.
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1 Introduction 

The reason why commercial off the shelf (COTS) products have long been proposed as an 

alternative or complementation to especially developed military products is mostly because of 

the potential cost reduction, the quick adoption of new technology and the readily available 

products [1]. The main drawbacks are usually their inability to comply with the high military 

requirements for security and robustness and their lack of compatibility with military standards. 

In addition, commercial products are usually not made to last particularly long and especially IT 

products are continuously patched and updated during their life time. This can lead to problems 

like obsolescence, which is the lack of replacement parts or updates that renders relatively new 

products quickly obsolete so that they must be replaced or disposed of. A famous case is the 

super-cluster the US Air Force built out of PlayStations 3, but where a firmware update made it 

impossible to replace broken units with new PlayStations as it was now impossible to install 

Linux on them
1
. 

Commercial ―smart‖ technology, and especially its mobile incarnations such as smartphones, 

tablets or even smartwatches, is making the case for adopting COTS products as current as ever. 

These devices changed the way we produce and consume information. They are with us all the 

time, are interconnected and packed with sensors that can continuously collect data about our 

environment, our movements or our preferences and present us with personalized information 

based on what we might need in that particular situation. Thanks to intuitive interfaces and apps 

for any thinkable purpose, we can also easily generate and share information instantly with 

whomever we like. Not surprisingly, many have already realized that this technology can have 

many innovative applications also in a military setting, despite the possible pitfalls mentioned 

above. Related activities are already exploring the use of apps for improving reporting [2], 

situational awareness [3], information sharing in crisis situations [4] and command and control 

information systems (C2IS) [5]. The proposal of using the Long Term Evolution (LTE) standard 

for the Norwegian Defence [6] also strengthens the case for adopting commercial smartphones 

that natively support it.  

However, simply integrating commercial mobile devices into a military information system is 

no trivial task, and security is one of the main reasons. On one hand, there are many that are 

enthusiastic about what can be achieved with this technology and that focus on developing new 

apps, frameworks and interfaces tailored for military use, but intentionally leave security as an 

after-thought. This often results in insecure products that cannot be deployed unless they are 

completely redesigned from scratch with security in mind. On the other hand, we have military 

systems that can protect classified information mostly because they are kept isolated from other 

potentially harmful systems by an air-gap approach. This means that they are not designed to 

handle secure information exchange with other systems which cannot guarantee the same level 

of assurance or control, even though the information itself is not highly classified. Thus, 

commercial smartphones and tablets are often not considered secure enough to access these 

                                                           
1 http://arstechnica.com/gaming/2010/05/how-removing-ps3-linux-hurts-the-air-force/ 
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military systems even to retrieve or report unclassified information, because of the lack of 

secure information exchange solutions across different security domains.  

However, the aim of this report is not to solve the above mentioned problems, but rather to 

place modern mobile platforms in a clearer security perspective, so that those who may be 

interested in adopting them for tasks or projects where security is critical, can get a better 

understanding of what protection they can expect, what solutions are available and what 

challenges they may encounter in actual deployment. Increased awareness around what these 

devices can realistically offer in terms of security can then help to identify the situations where 

they can provide an adequate level of protection and to design solutions that are usable in 

practice. 

1.1 Context 

The common claim that a commercial mobile device is generally ―not secure enough‖ is 

misleading. There will always be some risks associated with the adoption of any technology and 

it is important to correctly understand what these risks are and assess whether they are 

acceptable
2
 on a case-by-case basis. The concept that the protection required for some given 

information is not static, but can change with time and circumstances, should also be central in 

this assessment process. The current military approach to information security, however, is not 

flexible enough to account for this kind of dynamism.  

The first problem is that when information is to be exchanged between systems, the security 

requirements are to a large extent based on the classification of the systems rather than that of 

the information. So, unclassified information may not be accessed by an unclassified device if it 

is stored on a classified server for fear that other classified information may leak out. In a 

similar way, an unclassified device may often not even send information to a classified server in 

the chance that malicious code could sneak in and compromise it.  This effectively reduces the 

effect of adopting commercial devices even in situations where no sensitive information is 

involved, but where they have to operate within a military infrastructure.  

The other problem is that information is classified statically, often based on long-term 

confidentiality requirements, and in order to make it available to lower classified systems or 

users with lower clearance, it must be manually declassified. This is a time-consuming process 

and does not account for many possible situations where other requirements like integrity and 

availability may weigh more than confidentiality, or where confidentiality protection does not 

need to be long-lasting. For instance, smartphones may not be trusted to protect classified 

information due to their mobile nature that makes them particularly vulnerable to physical 

attacks, but if the information could be considered classified only for a short period of time for 

which we can guarantee reasonable protection, then the risk of using smartphones could be 

acceptable given some additional mitigations. In other situations, one may decide that 

                                                           
2 «Acceptable risk» is defined as : «A risk that is understood and tolerated by a system's user, operator, owner, or accreditor, usually 

because the cost or difficulty of implementing an effective countermeasure for the associated vulnerability exceeds the expectation 

of loss‖ in RFC4949.  
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confidentiality is not so important as long as we can trust the information provenance (trusted 

sources), so that integrity requirements should be used to assess whether a specific device can 

be used, rather than its capability to keep information secret. Similarly, connectivity and 

interoperability requirements could be prioritized over confidentiality in scenarios where 

cooperation is the key to success rather than secrecy.  

So, it might indeed be difficult to define commercial mobile devices as ―secure‖ in the current 

context. However, the definition of a more flexible security concept based on a dynamic risk 

assessment rather than static security classifications has already been envisioned in the context 

of a Network Based Defence [7], so that even commercial devices may effectively be 

considered secure enough for some situations. Activities that deal with the specific problems 

mentioned above are also ongoing [8]. Thus, what can be considered secure will most likely 

also change, and this report wants to provide the starting point to evaluate commercial mobile 

devices in this new context. 

1.2 Methodology  

This report surveys a selection of commercial mobile technologies based on available open 

sources. The goal is to present an organized overview of the security mechanisms they 

implement, a discussion of what they are meant to protect and how well they work on a large 

scale in the consumer market. We estimate their general effectiveness by reviewing publicly 

available security reports. These are mostly compiled by antivirus companies and other third 

parties that collect and analyze data about the known vulnerabilities and infections present on 

the devices that run their clients. Based on this analysis we can gain an idea of what constitutes 

a threat for these devices and why security may have failed to defend against it. We then use 

this information to evaluate additional solutions specifically developed to enhance mobile 

platform security, both for commercial and military purposes. Finally we put everything 

together by describing a possible scenario and discuss practical challenges one may encounter 

and possible mitigations when deploying a mobile solution in a military setting.  

1.3 Scope 

There are various limitations that should be considered when reading this report. First of all, we 

consider mainly platform security and only touch upon application and infrastructure security. 

Application security is very important, but it would require a separate report and is something 

over which we have much greater control than platform security. The infrastructure is also 

essential to a complete secure solution, but it is being looked at in other upcoming reports. 

Secondly, the overview of security mechanisms we present here is not exhaustive. We selected 

the four most popular commercial mobile platforms, which together have a market share of over 

99%, and described only the most relevant of their security mechanisms in order to give an idea 

of what kind of security is offered in general. We do not have as a goal to write a detailed 

technical reference. Besides, many implementation details are not made public, so there may be 

additional mechanisms that are not documented at all, or that are implemented in different ways 
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on different devices. The imbalance in the publicly available information for the different 

platforms we consider is also reflected in the level of detail in this report. Open platforms are 

naturally discussed more thoroughly than closed ones.  

The estimate of the infection rates of active devices, and therefore of their ability to defend 

against various threats is also based on known attacks and vulnerabilities and their detection is 

dependent on information reported by the device itself. Devices that for instance are kept off-

line, those that do not share information with antivirus companies or similar third parties, or  

victims of new unknown attacks, are therefore not included in these estimates.  

Thus, the report should be used as an indication of what security can be achieved with 

commercial mobile phones given certain assumptions, but whether a given solution and device 

model is indeed secure enough for a specific purpose must be evaluated separately through 

some dedicated testing or certification process, and by requesting more detailed documentation 

from the manufacturer.  

1.4 Report overview 

The next chapter explores in detail the security models and mechanisms adopted by the most 

popular commercial mobile platforms, namely Android, iOS, Windows and Blackberry, in order 

to understand what kind of security they offer and for what purpose. Chapter 3 analyses how 

effective these mechanisms are in practice in a commercial setting based on public security 

reports and statistics. What emerges is that the number of actual compromised devices is 

surprisingly small in percentage, in contrast to the widespread opinion that mobile devices are 

relatively insecure and easy to compromise. In Chapter 4 we compare different Bring Your Own 

Device (BYOD) approaches and other products and projects aiming at improving mobile device 

security for classified and tactical use. Chapter 5 presents a possible scenario where commercial 

mobile devices are to be used and integrated within a military infrastructure and analyzes some 

of the practical challenges users and staff might meet. Possible mitigations are then discussed 

based on our previous work on the subject [2]. Finally, in Chapter 6 we give some conclusions. 

2 Mobile security 

Modern mobile devices like smartphones and tablet are used for more and more security-

sensitive tasks like: mobile payments; secure authentication; remote control of house alarms, 

cars, and even drones; enjoying premium services and paid content; storing privacy-sensitive 

information; accessing company networks; and so on. This means that there are many actors 

that need to trust these devices with protecting their assets, and if mobile platform providers and 

device manufacturers want to appeal to a wide audience and gain market share, they need to 
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provide sufficient and convincing security on which to build all these services. Lack of adequate 

security has long been a problem, but it seems that recently much more focus has been 

dedicated to this issue and systems have been redesigned to fill the existing gap, so that even 

mid-range devices can provide sufficient protection for most daily tasks. In this chapter we give 

first an introduction to the most common security mechanisms found today in commercial 

mobile devices, and explain what they are intended to protect and at which level of the platform 

they operate. Afterwards, we present in more detail the security models of the most widespread 

mobile platforms on the market, namely Android, iOS, BlackBerry and Windows, which 

together account for more than 99% of the device platforms present on the global market as 

shown in Figure 2.1. 

  

 

Figure 2.1 Data about global mobile platform market share from IDC3. 

 

2.1 Modern mobile platform security 

In order to understand the security of a mobile platform, we need first to describe the 

components of such platform, the actors involved and the assets they intend to protect. A 

generic mobile device architecture is shown in Figure 2.2. 

A mobile device consists of some basic hardware not too unlike that of a laptop. We have a 

processor, the volatile memory or RAM, permanent storage, a display, a microphone, speakers, 

some peripherals and a battery. Unlike other computing devices we find also various other 

sensors like GPS, accelerometer, temperature and light sensors and others. In the case of 

smartphones we also find a radio processor, or baseband, to handle the connection to a mobile 

                                                           
3 http://www.idc.com/prodserv/smartphone-os-market-share.jsp 
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network. Finally, rather than a BIOS (Basic Input-Output System) we have one or more boot-

loaders that boot the software on the device. Assembling or even producing all these 

components is responsibility of a manufacturer.   
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Figure 2.2   A generic mobile architecture where we roughly illustrate which components are 
                    under the control of which actors. We distinguish also between the system platform that 

                   includes hardware and operating system, and the application layer which includes the apps 

                   running on top of it and that usually are installed afterwards by users or administrators. 

On top of the hardware we have an operating system (OS). Its main component is a kernel that 

takes care of the most critical functionalities like process scheduling, interface with the 

hardware, resource handling, and low level communication. At a higher level it provides 

interfaces to the application layer to communicate with the hardware and access various services 

and system libraries. This component is provided by the platform provider. Applications that 

run on top of the OS can be pre-installed or developed independently by third-party developers 
and made available for download by distributing them through app-stores. App-stores are run 

by market providers who can enforce various policies about what kind of application their app-

store accepts and who can publish applications there. If the market provider coincides with the 

platform providers, tighter control on what can be installed on a specific platform can be 

enforced. However, it is usually the user who can decide what to install and what not, unless the 

device does not belong to the user. In this case an administrator can enforce a specific security 

policy about how the device should be used. Finally, in smartphone, the mobile operator 
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controls the secret parameters needed to connect and use the mobile network through a SIM 

(Subscriber Identity Module) card, and sometimes it can also operate as device administrator 

when it comes to which application can be installed or which networks can be used. 

Summarizing, we can identify seven main actors: Users; Manufacturers; Mobile Operators; 

Developers; Platform Providers; Marketplace Providers and Administrators. Each of them has 

control and responsibility for different parts of the mobile device and the infrastructure around 

it, and they have different assets they want to protect from different potential adversaries. Table 

2.1, reported from [9], summarizes the relationships among these actors, the assets they wish to 

protect and their adversaries. 

Actors Incentives 
Resources to 

protect 

Primary 

adversary 

Additional 

adversaries 

Users 
Preserve privacy, 

use device freely 
Private user data 

Remote 

attacker 

Attacker with 

temporary 

physical access 

Manufacturers 

Business model, 

regulatory 

services 

Device identifiers, 

configuration 

parameters, platform 

version 

User 
External 

attacker 

Mobile 

operators 

Subscriber 

contract 

enforcement 

Usage of subsidized 

devices, mobile 

network resources 

User 
External 

attacker 

Developers 
Mobile service 

protection 

Application data and 

code 

Remote 

attacker 
User 

Platform 

providers 
Business model 

Platform 

functionality 

Malicious/slop

py developer 
User 

Marketplace 

providers 

Marketplace 

popularity and 

reputation 

Distributed 

applications 

Malicious/slop

py developer 
User 

Administrators 
Company 

business model 

Company 

confidential data 

Remote 

attacker 

Attacker with 

temporary 

physical access 

Table 2.1     Summary of actors who have some asset associated to the mobile platform they want 
to protect [9]. 
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Based on this table we can identify some basic security mechanisms that we can expect to find 

in a modern mobile platform, which are summarized in Table 2.2.  

 

SECURITY MECHANISMS AT PLATFORM LEVEL 

H
A

R
D

W
A

R
E

 

Secure Boot Hardware-based security SIM card 

O
P

E
R

A
T

IN
G

 S
Y

S
T

E
M

 Sandboxing and isolation Data-at-rest protection 
Data-in-transit 

protection 

Exploit mitigations Crypto Authentication 

IN
F

R
A

S
T

R
U

C
T

U
R

E
 

Secure application provisioning Security updates Security management 

Table 2.2     Summary of the main security mechanisms expected in a modern mobile platform, 
organized per level. 

 

Let us now go through Figure 2.2 based on the protection needs listed in order to understand 

how we came to Table 2.2. First of all, we separate the mobile architecture into two parts: the 

mobile platform and the application layer.  We can then distinguish between platform security 

and application security. Platform security concerns all security mechanisms that come with the 

device, including the hardware, OS, mobile operator and pre-installed services based on some 

existing infrastructure. In other words, what we get when buying an off-the-shelf device. 

Application security is the security implemented in each app we install on the device, and builds 

mainly upon the platform security. Although application security is also very important, here we 

focus mostly on platform security both because it would be too large of a topic to tackle both in 

one report, and because platform security is the building stone on which application security 

depends on. If the platform is compromised, no security built in the application layer can be 

completely trusted. We are going to summarize the typical application security concerns at the 

end of this section anyway, but we are first going through the actors in Table 2.1 with focus on 

the platform. 
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Manufacturers want to protect platform identifiers, hardware firmware like boot-loaders and 

baseband processor, and other configuration parameters. In other words they want to protect the 

platform integrity and make sure that everything is in order every time the system is booted.  

The platform provider, or better the operating system, needs to make sure that malicious 

developers, users and external attackers, cannot easily subvert the platform and compromise or 

steal sensitive user data, cryptographic keys, credentials and copyrighted material, or install 

spyware that can record transactions or conversations taking place on the device. This means 

that it must provide a series of security mechanisms to prevent for instance: applications from 

reading each other memory; users from misusing or redistributing paid services and material; 

and malicious code from exploiting potential vulnerabilities and gain system privileges. This 

should happen both in a preventive manner, by allowing only trusted applications to be installed 

and giving them only the permissions they need, and at run-time by making sure attacks to or 

from these apps are either prevented or mitigated. In order to establish trust in the applications 

that are downloaded and installed on the device, someone must verify their genuineness before 

they are made available to the end-users. Usually it is the marketplace providers that should 

verify both the identity of the developers and that the applications are developed after certain 

quality and security standards. Users are also critical to security, as they can often take actions 

that override or deactivate the mechanisms that are there to protect them. Based on these 

security needs, we summarized some security mechanisms in Table 2.2, which we now explain 

more in detail: 

 Trusted or secure boot: This technology is used to verify the integrity of the system 

components at boot time. It builds a transitive chain of trust starting from the first 

component run on the platform, which is assumed to be correct, non-bypassable and 

immutable. This component is called the root of trust, and in mobile platforms it is 

usually implemented in firmware as the first stage boot-loader. This root of trust can 

either ―measure‖ or verify the signature of the next component, before letting it run on 

the system. If the verification is successful, the next component is run and iterates the 

process until the OS image, which is now guaranteed to be the genuine one, is loaded 

and takes control of the platform.  

 Sandboxing and isolation: Protection of the applications running on top of the operating 

systems should be implemented and enforced at platform level. Sandboxing and 

isolation should guarantee that each application runs in a protected and isolated 

environment, so that the rest of the system can neither compromise or be compromised 

by it. Sandboxed applications should not have access to any other resources than the 

ones they need, and should not be able to directly access system resources or other apps 

memory. In addition, the inter-process communication between apps or processes 

should also be carefully designed and under the control of the operating system. Access 

control can be used to enforce a sandbox model. 

 Mitigation of exploits: The platform should offer mitigation for possible exploitation of 

vulnerable apps on the system, so that malicious code loaded in memory cannot be 

executed so easily by the malicious app even though it managed to break out of the 
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sandbox. Memory pages marked as non-executable and random allocation of code in 

memory are examples of these mechanisms.  

 Secure application provisioning: anything that can be installed on the platform should 

be verified to be free from malicious code and possibly come from a trusted source. In 

addition it may be installed only if it conforms to some given security policy. The 

process of verification can take place both on the platform itself, but also in other parts 

of the infrastructure before an application is even allowed to be made available for 

download. Signature-based verification of application binaries is the standard. 

 Protection of data at rest: The platform should offer a secure storage mechanism to the 

applications running on it, in order to protect their data also at rest. Sensitive data can be 

personal data, identity credentials, or cryptographic keys and certificates. Full disk 

encryption and locations with restricted access rights are some of the common measures 

taken to achieve this. 

 Protection of data in transit: Standard and well established cryptographic protocols 

should be offered by the platform to protect communication to and from the device. 

VPN, TLS and PKI certificate support are some examples. 

 Centralized and frequent security updates: As new vulnerabilities in mobile platforms 

are continuously discovered, it is essential that an infrastructure is in place to provide 

the required security patches as soon as they are available and possibly without the need 

of user intervention or further adaptations. 

 Support for security management: In order for the platform administrator to create and 

enforce the company security policy, the platform must offer an adequate interface to 

management software, so that policy enforcement can take place at system level. Native 

BYOD solutions are also becoming a standard in modern mobile devices. 

 Device lock: some form for local authentication is needed to lock the device to others 

than the legitimate user. This can be in the form of a screen-lock, pin, password, smart-

card, facial recognition or geo-fencing, to name a few. 

 Crypto libraries: In addition to data protection at rest and in transit, in order for 

applications to implement their own layer of security, the platform should provide 

functional and certified cryptographic tools, so that encryption, signing, generation of 

random numbers and secure connections can be used without having to rely on third 

party libraries shipped with the application.  

 Mobile network parameters: secret parameters needed to authenticate a subscriber to 

the mobile network are securely stored in the SIM card. These smart cards receive 

network information directly from the baseband processor, but can also use the 

operating system to provide some services to the user or collect user input, through the 



 

 

    

 

FFI-RAPPORT 16/00319 17  
 

(U)SIM Application Toolkit [10]. They can be bound to a specific device by an operator 

lock implemented usually in the firmware
4
. 

 Other hardware-based security mechanisms: trusted boot, SIM cards and some exploit 

mitigation mechanisms are examples of hardware-based security mechanisms. Others 

can be cryptographic co-processors, access control to peripherals embedded in the 

processor itself rather than the OS, trusted execution environments, eFuses
5
 and so on. 

To conclude this section and for completeness, we report the ―The Open Web Application 

Security Project (OWASP) Mobile Top 10‖
 6
, which is a list of the most common security risks 

in mobile application development. In other words, security aspects developers tend to ignore or 

fail to properly implement, but which do not directly depend on platform security: 

1. Weak Server Side Controls: This is actually pretty much anything that can go wrong, 

but that does not directly take place on the mobile device.  

2. Insecure Data Storage: Most applications store sensitive data unencrypted on the 

device, or even worse on an external memory card. Even when encrypted, the key may 

not be strong enough or protected correctly. 

3. Insufficient Transport Layer Protection: The connection to a server is not always 

cryptographically protected, and even when it is it may use old algorithms, weak keys 

or invalid certificates. 

4. Unintended Data Leakage: This is often in the form of aggressive caching or logging of 

sensitive information, or clear text metadata sent to websites or third party server. 

5. Poor Authorization and Authentication: Local authentication that is based on weak 

passwords; storing keys and passwords in clear text on the device; and assuming that 

because a user authenticated successfully locally, there is no need to authenticate also 

remotely on the server; are all examples of this problem. 

6. Broken Cryptography: This includes third party crypto providers whose algorithm 

implementations have not been properly tested and certified; weak key management; 

custom cryptographic protocols; use of insecure or deprecated algorithms. 

7. Client Side Injection: This concerns all possible types of code injections an attacker can 

perform when proper input validation is not implemented. For instance SQL injections, 

JavaScript injections and XML injections. These attacks are often executed via a web 

component. 

                                                           
4 https://www.theiphonewiki.com/wiki/Unlock 
5 https://www.samsungknox.com/en/blog/about-rooting-samsung-knox-enabled-devices-and-knox-warranty-void-bit 
6 https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks 
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8. Security Decisions Via Untrusted Inputs:  Somewhat similar to the previous, it refers 

mostly to inter process communication and the lack of input validation. 

9. Improper Session Handling: This problem refers to the failure of properly invalidating a 

session, setting a reasonable time-out, rotating cookies and generating tokens in an 

unpredictable manner. 

10. Lack of Binary Protections: Refers to the possibility of easily reverse engineering and 

modifying application binaries in order to bypass security mechanisms. 

We have now enough terminology and background to look at the specific security mechanisms 

implemented in the four mobile platforms we chose to analyze. 

2.2 Mobile platforms security models and features 

Although the term ―platform‖ sometimes indicates only the OS, in this context we use it to 

intend both  the hardware, the OS, and the infrastructure around it. The reason is that many 

platform vendors like Apple and BlackBerry control all aspects of the production chain of a 

mobile device, from hardware to apps, in such a way that it makes sense to see all these 

components as a whole. Others like Microsoft provide only the OS, but they still rely on some 

hardware features that are expected, if not required, to be present on the device on which they 

run. Finally, there is Google that provides a reference Android implementation (AOSP), but 

leaves carriers and manufacturers free to modify it as they wish in order to run it on their 

devices and with their additional software. Still, all the mobile platforms we present in this 

report run on a common hardware platform, namely ARM SoCs (System on Chip). Therefore, 

we start by briefly presenting the hardware security extensions that are built in ARM chipsets, 

so that it will be easier to understand how they are used by the different platform providers. 

2.2.1 ARM security  

Unlike Intel and AMD, ARM provides only the specifications for their chipsets, which are then 

manufactured by different companies like Qualcomm, Texas Instruments, Exynos, Broadcom, 

Apple, and others. However, most new ARM processors include some interesting security 

extensions, collectively called TrustZone. TrustZone is an implementation of what is known as 

a Trusted Execution Environment (TEE). In simple terms, it is a technology that allows 

virtualizing a secure processor on top of a normal one, and that integrates access control at 

hardware level. By setting a special bit called the NS (Non Secure) bit in the processor, one can 

run the same processor core in either a non-secure or a secure mode, or ―world‖, and at the same 

time make the memory and peripherals aware of which mode is currently active, so that they 

can grant or deny access to some pre-configured secret, devices or memory areas.  
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Using this technology, one can effectively run two different operating systems on the same 

device, where one runs in the ―normal world‖ and does not have any access to the memory and 

dedicated devices of the other one, which runs in the so called ―secure world‖. However, there 

are different possible architectures that can be built on top of TrustZone, including simple APIs, 

secure services, or complete operating systems [11]. Possible secure services one can implement 

can be: secure boot, firmware TPM, crypto services, and isolated execution. More details can be 

found in a previous report [12]. This technology is not new, as it was first presented in 2004 

[13], but it has been actively used to offer better security in mobile devices only in the last 

years. Some companies like Gemalto and Giesecke & Devrient developed also their own 

TrustZone-based solutions, but eventually joined in a common venture called Trustonic
7
. 

Standardization efforts have also been ongoing, and Global Platform has now released 

specifications for various aspects of mobile TEEs
8
. The most updated and complete open source 

implementation of a TrustZone-based TEE is now the Linaro OpenTEE
9
. Their solution 

architecture is reported in Figure 2.3. Another security feature of ARM processors is the XN 

(eXecute Never) or NX (No-Execute) bit, that allows the OS to mark memory page as non-

executable, so that the code stored in them will never be run.   

Figure 2.3    Linaro OpenTEE architecture6. 

 

                                                           
7 http://www.arm.com/about/newsroom/arm-gemalto-giesecke-devrient-form-joint-venture-deliver-next-generation-security.php 
8 https://www.globalplatform.org/specificationsdevice.asp 
9 http://www.linaro.org/blog/core-dump/op-tee-open-source-security-mass-market/ 
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2.2.2 Android security 

Android is the most popular OS around, running on more than 80% of the mobile phones 

shipped globally last year as shown in Figure 2.1Error! Reference source not found.. Android 

as a mobile operating system is maintained by Google, but it is installed on devices 

manufactured by many different companies like Samsung, LG, Motorola, Huawei, Sony and 

recently even Blackberry, just to name a few. This means that although the basic Android 

features are developed, maintained and documented by Google, different devices may ship with 

their own customized versions, possibly with additional modules and features and varying 

underlying hardware. This has of course an effect also on the security offered by each single 

device, although a vulnerability found in the original Android by Google would most likely 

affect all of them in some way. In addition, patches released by Google will not reach all 

Android devices simultaneously, because it is the single OEM’s (Original Equipment 

Manufacturer) responsibility to provide patches for their own systems.  The main components of 

the operating system are shown on Figure 2.4, taken from the official Android Open Source 

Project web-page. Security is built mostly in the kernel, which is based on the Linux kernel and 

from which it inherits the user-based permission system, the process isolation and secure Inter 

Process Communication (IPC). Sandboxing, various authentication methods, full disk 

encryption, verified boot, VPN and device administration capabilities are also standard security 

mechanisms that have long been part of the OS. 

 
Figure 2.4   Android architecture 

10
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Recently, however, from Android Lollipop, some security features that require TrustZone 

support have also been introduced, together with other security enhancements. This is partly 

shown in Figure 2.5. The Keystore and Digital Rights Management (DRM) manager have been 

moved to the ―secure world‖ so to be inaccessible to the normal OS and tamper-resistant. The 

actual services however, must be implemented or provided by the device manufacturer, while 

Android simply offers an interface to its apps for using these services if they are present. The 

verified boot mentioned earlier, assumes also some kind of hardware support, as it is dependent 

on the boot-loader verifying the kernel image with some preloaded key, in order to assess its 

integrity
11

. 

The NX bit discussed earlier is also actively used, and SELinux (Security Enhanced Linux) [14] 

has been integrated in Android to provide Mandatory Access Control (MAC). Unlike 

Discretionary Access Control (DAC), MAC can enforce more flexible and fine-grained security 

policies that can help to mitigate many types of attacks also after a vulnerability has been 

exploited. Android for Work that allows partitioning the device into a Work and a Personal 

space is built on these technologies [15]. 

A last fundamental difference between Android and other mobile platform is the App Store 

model. The official android store is called Google Play, and in order to publish third party apps 

on it, it is only necessary to pay a nominal fee at registration time for the developer
12

, and sign 

the app binary with a self-signed certificate
13

. This gives little trust in the identity of the 

developer. In addition there does not seem to be any manual revision of the apps to guarantee 

their quality, but only an automatic checker called Google Bouncer
14

. While the effectiveness of 

this approach is still debated, it does give some security. The real problem is that users can 

decide to install also third party apps from unknown sources that give no guarantees whatsoever 

on the origin and genuineness of their apps. In this sense, what distinguishes Android from other 

platforms is its openness, which can be good for developers and users, but probably not so good 

for security. In order to mitigate this problem, Google introduced Verify Apps
15

, a service that 

scans third-party apps at installation time, warning the user of potential harmful applications. In 

addition, a service called SafetyNet continuously monitor the device and  collects information 

about configuration, installed apps, network usage and more, in order to uncover possible 

compromise in the form of rooting, installed malware or in general CTS (Compatibility Test 

Suite)  compatibility
16

. SafetyNet is also provided as a service for app developers that can use it 

to ―attest‖ the status of the device before running security sensitive services. Its internal 

                                                           
10 https://source.android.com/security/ 
11 https://source.android.com/security/verifiedboot/verified-boot.html 
12 http://developer.android.com/distribute/googleplay/start.html 
13 http://developer.android.com/tools/publishing/app-signing.html 
14 http://googlemobile.blogspot.no/2012/02/android-and-security.html 
15 http://officialandroid.blogspot.no/2014/04/expanding-googles-security-services-for.html 
16 https://source.android.com/compatibility/cts/index.html 
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functioning is not clear, but it appears that Google invested a lot of effort to provide a robust 

and secure service
17

. 

 

Figure 2.5   Extended security model of Android, including TrustZone support, from [15]. 

2.2.2.1 Samsung Knox 

Since Android can freely be modified by OEMs, we have also other incarnations that provide 

extra security on top of what is offered out-of-the-box. The main example is Samsung Knox 

[16], a security enhanced version of Android developed by Samsung, which was used as the 

base to build the new security functionalities of Android Lollipop
18

, among which Android for 

Work. A detailed comparison between the two can be found in [17], but as Figure 2.6 shows, 

the main difference is the trusted computing approach they implemented in the pre-boot 

environment leveraging the TrustZone capabilities. This provides integrity protection both at 

boot and run-time, and even attestation capabilities (more on trusted computing in [12]). In 

addition, they offer reinforced work-space containers, called Knox workspaces. Still, the actual 

Knox environment, which offers a parallel environment with its own desktop, apps and services, 

appears to be nothing more than an app run on top of the common Android kernel rather than in 

TrustZone, so the ―secure-world‖ is probably only used to run the pre-boot services rather than a 

dedicated secure OS. Besides the dedicated secure workspace, Knox secure APIs can also be 

used by other apps to provide additional security on Samsung devices in a transparent way for 

the user. Finally, customized secure operating systems based on Knox can also be developed 

and installed by Samsung so that they are locked to the specific device at manufacturing time 

and no rooting is necessary. 

 

                                                           
17 https://koz.io/inside-safetynet/ 
18 https://www.samsungknox.com/en/androidworkwithknox 
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Figure 2.6   Samsung Knox architecture [16]. 

2.2.3 iOS security 

Apple is the second largest actor on the mobile market, and it is one of the platform providers 

that has complete control over the whole production chain. Apple produces even its own 

processors, the ARM-based Apple A series. This means that it can tightly integrate hardware 

security with OS security, and provide a unified experience to users across different types of 

devices as well. App distribution is also centralized in the AppStore, and updates and security 

patches can be distributed directly to all Apple devices with no delays typical of the Android 

model. 

Apple mobile devices rely heavily on hardware-assisted security and have even a dedicated 

cryptographic coprocessor called the ―Secure Enclave‖, which has a dedicated secure boot 

process in addition to the usual one for the rest of the system, and a secure element, as can be 

seen in Figure 2.7. In addition, each device has some unique cryptographic keys and certificates 

installed or generated directly in the processor at manufacturing time, which uniquely identify 

the device and cannot be extracted. These are used for many security critical tasks like 

encryption, integrity checking, secure boot and signature verification. The XN bit is also used to 

mark memory pages as non-executable. 

The operating system, iOS, is derived from Darwin, an open source Unix system, and 

implements the protection at application level like secure installation, sandboxing and file 

encryption. Only signed apps can be installed on the device, and once installed they are 

sandboxed so that they can only access resources through standard services exposed by the 
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operating system. Most of the OS itself runs as an unprivileged user and the whole OS partition 

is mounted as read-only, so that a malicious app cannot try and modify it or escalate privileges 

[18]. Encryption, shown in Figure 2.8, is performed on a per-file basis, but the keys and the 

cryptographic algorithms are handled by the dedicated crypto-processor. 

 

 

Figure 2.7   Apple mobile security architecture [18]. 

Apple devices support also separation between Personal and Work space, a wide range of 

cryptographic algorithms for encryption, VPN and network protection, and a proprietary mobile 

payment solution that leverages the secure element. 
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Figure 2.8   iOS encryption [18]. 

As mentioned at the beginning, the distribution of apps is centralized, and the review process 

before allowing an app to be published is quite thorough. Apple requires developers to register 

to their iOS Developer Program in order to issue a certificate that will be used to sign their apps. 

Developers are to be identified personally. Apps are reviewed by Apple also manually in order 

to ensure that they operate as described and do not contain obvious bugs or other problems. All 

approved apps are then signed by a certificate issued by Apple, so that they can be validated on 

the device by the Apple root certificate installed at manufacturing time. Signatures are also 

checked every time an app or some code is run [19]. The Apple store is the only way to install 

apps on a device, no third party stores are allowed. However, companies can obtain special 

certificates to create in-house apps that can be installed bypassing the appstore [18].  

2.2.4 Blackberry 10 security 

Blackberry (BB) is known for their focus on security and lately they completely redesigned their 

platform with BlackBerry 10 (BB10). Previously, they heavily relied on Java and their 

proprietary OS BBOS, but now that is gone, and a completely new operating system is at the 

base of the platform: the Neutrino QNX RTOS (Real Time OS) showed in Figure 2.9. This OS 

is certified to Common Criteria EAL (Evaluation Assurance Level) 4+ and is based on a 

microkernel that enforces strong isolation already at kernel level rather than application level
19

, 

so that file system, device drivers and network are not part of the kernel.  

Security features built on this OS are similar to the ones we have seen for Android and iOS. 

Like Apple, BlackBerry also controls the whole manufacturing process, and installs hardware 

root of trust in form of keys directly in the processor. These keys are used to provide encryption 

also at file level, and to partition the device in Personal and Work space, mostly based on two 

different encryption keys [20]. This BYOD solution is called Balance.  Actual sandboxing 

seems to be based only on user and group IDs and filesystem permissions, rather than some 

physical memory separation, virtualization or more advanced mechanism
20

. This means that the 

whole security system relies on the expectation that it is impossible to escalate root privileges 

thanks to the micro-kernel architecture. 

                                                           
19 http://www.qnx.com/products/certified_os/secure-kernel.html 
20 https://www.youtube.com/watch?v=z5qXhgqw5Gc 
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Figure 2.9   The Neutrino QNX operating system21. 

The secure boot is executed from a root of trust embedded in the CPU itself, as shown in Figure 

2.10. The CPU bootloader verifies the digital signature of the bootloader code before it can run, 

and the bootloader in turn verifies the digital signature of the OS [21]. In the same figure we see 

also that the platform supports four different kinds of applications. 

 

Figure 2.10   BlacBerry 10 platform architecture [21]. 

Application distribution is, like Apple, handled centrally by an official appstore called 

BlackBerry World. The verification process is also similar to Apple, where developers must 

first enroll and then submit their apps for verification, which according to BlackBerry is quite 

                                                           
21 http://www.qnx.com/products/certified_os/secure-kernel.html 
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aggressive
22

. Unlike other platforms, the apps are signed by Blackberry with the developer 

certificate online, meaning that they have a copy of the developer’s private key
23

. There are, 

however other ways to install apps on a BlackBerry device, but they mostly involved enabling 

the developer mode on the device [19]. 

An interesting curiosity to conclude this section is the recent debut of the last BlackBerry 

device, Priv, which runs Android as main OS. BlackBerry claims to have hardened the security 

of Android in various ways, by enhancing various security features already existing in Android 

and by integrating Blackberry hardware based security
24

. What this means for the future of the 

QNX OS is unclear. 

2.2.5 Windows 10 Mobile security 

The newest incarnation of Windows mobile has been launched in December 2015 and it is not 

easy to find detailed information about its security, except for a quite informative video from 

Microsoft Ignite 2015 Conference held in May 2015 [22]. All information in this section comes 

from that source. In Figure 2.11 we can see that most of the security features resemble those 

discussed for the other mobile platforms, so we will focus only on what is different. 

Starting from the boot process, the mobile devices running this OS are required to comply with 

the UEFI (Unified Extensible Firmware Interface) specifications and implement a secure UEFI 

boot. In particular, TrustZone is used to implement a firmware version of the TPM 2.0 [23]. 

Having a TPM implementation enables also remote attestation, trusted boot and BitLocker 

functionalities. BitLocker, in particular, is the choice for disk encryption in Windows 10 

Mobile. This means that everything that is written to disk is encrypted with the same key, rather 

than having a per-file key like iOS and BlackBerry. 

The other interesting feature that distinguishes Windows from other mobile platforms is the 

tight integration with its desktop counterpart and the portability of its apps. The idea is to have 

what they call ―universal apps‖ that can easily be ported with minimal modifications from 

desktop to mobile and vice-versa. Mobile devices can then be turned into full-fledged computers 

by connecting them to a dock station that provides keyboard, mouse and a screen. 

Finally, it seems that although Windows can be run on devices from different OEMs, Microsoft 

will provide centralized security and system updates directly to all types of devices
25

. In this 

sense it can be seen as an interesting compromise between the openness of Android and the 

centralized control of Apple and BlackBerry. 

 

                                                           
22 https://developer.blackberry.com/builtforblackberry/documentation/criteria.html 
23 http://devblog.blackberry.com/2013/08/code-signing-keys-be-gone-welcome-blackberry-id/ 
24 http://blogs.blackberry.com/2015/11/why-blackberrys-android-is-best-for-security-and-privacy/ 
25 http://www.cnet.com/news/microsoft-to-control-software-updates-for-windows-10-mobile/ 
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Figure 2.11   Windows 10 mobile security architecture [22]. 

2.3 Discussion 

In this chapter we have gone through most of the technical security offered by the four mobile 

platforms we considered. Finding the right level of detail is not easy, as we want to include as 

many relevant mechanisms as possible while not diving into too many technical details or report 

lists of supported protocols and security algorithms. We gave a recapitulatory overview in Table 

2.3, but again, in no way exhaustive. A more detailed comparison of some chosen mechanisms 

can be found in the appendix. The main point we want to make is that these platforms do offer a 

wide range of security mechanisms and have a comparable level of maturity. The most 

important differences lie in the type of the deployment model. When more of the actors listed in 

Error! Reference source not found. coincide with the same entity, we can expect better 

security because there are less conflicting interests, fewer adversaries and therefore fewer 

threats. For instance, Apple and Blackberry are at the same time platform manufacturer, 

platform providers, marketplace providers, and actually administrators for normal users. This 

means that they: have a much greater control over their devices; can enforce a consistent policy 

that governs all layers; can push updates centrally to all devices simultaneously; have stricter 

policy and guidelines about app development and distribution; and can optimize their software 

for a specific hardware also from a security point of view. Google, on the other hand, only 

provides the OS, namely Android, which can be customized and run on many different types of 

hardware. This causes system fragmentation, delayed updates, greater possibility of bugs in 

some customized implementation, and device specific security.   
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 Mechanisms Android iOS BB Windows 

Hardware 
level 

security 

ARM TrustZone 
Implementation 

dependent 

Not clear if 

used 

Not clear if 

used 
YES 

Root of Trust 

(unique key) 

Implementation 

dependent 
YES YES YES 

Microkernel NO NO YES NO 

Trusted Boot 
Implementation 

dependent 

YES, 

Signatures 

YES, 

Signatures 

YES, 

TPM, 

UEFI 

Crypto processor NO YES NO NO 

Kernel/OS 
level 

security 

Encryption 
Full-disk 

encryption 

Full-disk + 

per-file 

encryption 

Full-disk + 

per-file 

encryption 

Bit-Locker 

Sandboxing/  

Permissions 
YES YES YES YES 

Exploit 

Mitigations 
NX, ASLR NX, ASLR NX, ASLR NX,ASLR 

Network security 

Certificate 

pinning, VPN, 

TLS, EAP….. 

VPN, TLS, 

EAP….. 

VPN, TLS, 

EAP….. 

VPN, TLS, 

EAP….. 

Authentication 

(Screen lock) 

PIN, password, 

pattern, 

fingerprint, face 

recognition, …  

Passcode, 

fingerprint 
Password 

PIN, 

Password 

Infra- 

structure 

security 

Native BYOD 

support 

Android for 

Work 

iOS for 

enterprise 

BlackBerry 

Balance 
YES 

App-store 
Google Play 

Third parties 
App Store BlackBerry 

Windows 

Store 

Security updates Delegated Centralized Centralized Unclear 

Table 2.3    Simplified summary of security mechanisms in the four mobile platforms. 
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Besides, to be consistent with their open model, Android allows also users to install unverified 

apps from third party app-stores if they wish to do so. Microsoft seems to have moved to a more 

open approach where they provide the OS, but still require the manufacturer to implement 

specific hardware support, and retain the possibility to update the software directly. We expect 

therefore that closed systems are easier to protect, and therefore less subject to infections or 

compromise. The data in the next chapter seems to partly confirm this assumption, but a more 

careful analysis reveals that this is not completely true, and that it may be possible to achieve 

similar levels of protection in all these platforms given a more restrictive deployment setting. 

As a final note, we would like to point out that the security presented here assumes an attack 

model where we can somehow trust the infrastructure and where an attacker does not have 

prolonged physical access to the device. For instance, if we cannot trust the mobile network 

protocols to implement adequate protection, an attacker could use an infrastructure-based attack 

to break security. Using false base stations to eavesdrop on the user calls or send remote attacks 

to the baseband processor is a prime example. Similarly, if we cannot trust the marketplace 

providers to thoroughly verify apps before making them available for download, there is little 

the device can do on its own to prevent malicious apps to be installed. Supply chain attacks, 

where malicious code may intentionally be injected in the device at production time, either by 

an attacker or by the manufacturers themselves, is also something that goes beyond the security 

mechanisms presented here. Finally, mobile devices are difficult to protect physically due to 

their mobile nature. It is easier to forget them unattended, lose them, borrow them or steal them. 

An attacker with enough time, motivation and resources will most likely manage to bypass most 

security on the average device in most cases. Nevertheless, by being aware of these weaknesses, 

it can be possible to design ad-hoc mitigations or additional security measures that can reduce 

the risk of compromise to an acceptable level for some specific situations. 

3 Security in practice 

From what we presented in Chapter 2, it is clear that security is emphasized in modern off-the-

shelf smartphones and tablets. However, the demand for new fancy consumer functionalities 

and the need to be the first to offer them on the market still seems to be the priority. So, while it 

is true that security is getting more attention, the probability of finding new bugs and 

vulnerabilities in these increasingly larger systems is also growing. In addition, despite the 

efforts of market providers to check for malicious apps and to enforce some quality standard
26

, 

poorly coded and harmful apps still find their way also in official app stores
27

. Even genuine 

apps that appear to do just what they advertise can become a security threat if used in the wrong 

way or if not properly tested against the specific security requirements of the environments 

                                                           
26 https://developer.apple.com/app-store/review/guidelines/ 
27 https://blog.lookout.com/blog/2016/01/06/brain-test-re-emerges/ 
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where they will be used
28

. Users are also part of the problem as they often consider security as a 

hindrance or do not pay particular attention to the risks to which they expose their devices. 

Despite this, we will show how statistics indicate that only a small percentage of devices seem 

to have been successfully compromised by some known threat, suggesting that the security 

mechanisms in place do work as intended in the majority of situations.  

In the remainder of this chapter we review various security reports reporting these statistics 

together with a selection of known vulnerabilities in order to understand exactly what types of 

threats and attacks these devices are exposed to, whether they manage to protect against them, 

and if not, why.  

3.1 Threats, vulnerabilities and related concepts 

In order to correctly interpret the data that we are going to present in this chapter, it is important 

to clearly define some basic security concepts like threats, vulnerabilities and attacks.  

A threat in general is defined as ―any circumstance or event with the potential to adversely 

impact organizational operations (including mission, functions, image, or reputation), 

organizational assets, or individuals through an information system via unauthorized access, 

destruction, disclosure, modification of information, and/or denial of service. Also, the potential 

for a threat-source to successfully exploit a particular information system vulnerability‖ [24]. 

Here we focus especially on this last sentence, where the threat-source can be identified with an 

attacker and the threat is the possibility of the system’s confidentiality, integrity or availability 

being compromised through the exploitation of a particular vulnerability.  

A vulnerability is a ―weakness in an information system, system security procedures, internal 

controls, or implementation that could be exploited by a threat source‖ [24], but not all 

vulnerabilities are as severe or easy to exploit. This is why all vulnerabilities documented in the 

Common Vulnerabilities and Exposures (CVE) system
29

 are given a severity assessment based 

on the Common Vulnerability Scoring System (CVSS) standard, now at version 3.0
30

.  This 

assessment takes in consideration various metrics, like for instance what kind of access the 

attacker needs, if remote or local, how difficult it is to meet all conditions required for the 

exploitation to be successful, whether authentication is required, and so forth.  

This leads us to the concept of attack. An attack is the series of actions that an attacker must 

execute in order to exploit a particular vulnerability on the system and realize the threat. Part of 

the attack is finding a path that allows getting to the system where the target vulnerability is 

located in order to execute the actual attack. The elements constituting this path are called attack 
vectors. Attack vectors can be classified according to what role they have in the attack, for 

instance ―channels‖ that allow to transfer the code from one place to another, ―enablers‖ that 

allow the malicious code to be unpacked or executed, ―targets‖ that are the services or the data 

                                                           
28 http://www.gartner.com/newsroom/id/2846017 
29 https://cve.mitre.org/index.html 
30 https://www.first.org/cvss 
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vulnerable to the attack, and so forth  [25]. All the possible attack vectors, weighed by their 

criticality, form the attack surface of the system, which can give a measure of how probable or 

easy it may be to successfully attack the system and exploit its vulnerabilities to realize a threat. 

The malicious code used to actually exploit the target vulnerability and achieve the attacker’s 

goal is called payload, while the object hiding and transporting the code is called the carrier.  

 

Figure 3.1    An example of an attack where the goal of the attacker is to gain root privileges on 
the device by executing a payload that targets a buffer overflow vulnerability in the 
device sandbox. This can be achieved by embedding the payload in a malicious app 
and trick the user into installing it from an app-store without review process. This 
can be enabled by the user by allowing side-loading. Other attack paths are also 
possible, like gaining physical access to an unlocked device. 

 

To illustrate the concepts explained in this section we show some examples of attacks and attack 

vectors in Figure 3.1. This is not meant to be exhaustive or completely exact in any way, it is 

only meant to give the reader a feeling of how the different concepts are related to each other. In 

fact, another important aspect that does not emerge from the figure, is that for an attack to be 

successful, it is not always sufficient to exploit only a single vulnerability in one target. More 

often a series of pre-conditions must be satisfied, and more security mechanisms need to be 

circumvented in order for the attacker to reach his goal. So the picture is much more complex 

than shown here. However, it does contain some typical attack vectors that are very relevant for 

mobile devices [26]. In particular, malicious apps are the most common carrier of malicious 

code. The reason being that there are various channel attack vectors that can be used to 
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distribute them and it is relatively easy to inject a malicious payload into another seemingly 

innocuous application and trick the user into installing it on the device. A resourceful attacker 

may even manage to install them on the device before it reaches the market, by performing a so 

called supply chain attack. This type of threat is very insidious and particularly prominent when 

governmental threat-agents are involved. Official and third-party app-stores are, however, the 

typical channels. In the first case a weakness in the review process is to be used to first publish 

the malicious app, so it is much more likely to find these apps in third party stores with little or 

no review. Alternatively they can be directly installed remotely from malicious web-sites or 

manually installed by an attacker with physical access to the device. An enabler that is needed 

in almost all these cases is that the user must intentionally or indirectly allow installation of 

untrusted application. This can be done on some platforms by changing some security settings, 

while in others it is possible only by forcefully bypassing the system locks. We can distinguish 

three such techniques:  

 Jail-breaking: is the process of removing restrictions imposed by the manufacturer 

on the device, like the impossibility of installing non-approved third-party 

software. This is in itself an attack that exploits a vulnerability in the system as it is 

not a provided feature.  

 Rooting: refers to gaining root privileges in the system, so that full control can be 

achieved. For instance, it becomes possible to turn off security mechanisms, grant 

access to non-trusted application, remove system components, and so on. Unlike 

jailbreaking, rooting is sometimes allowed on some systems like Android, but if 

not it can also be achieved through a vulnerability exploited by malware or users 

interested in customizing their device. 

 Unlocking: a third alternative is to unlock the boot-loader of the device in order to 

install a custom OS already configured with root access. This option can also either 

be offered as functionality or achieved through exploitation. 

It is easy to see how deactivating or compromising the security mechanisms in place on the 

device opens up the system also to external attackers, that can now more easily reach the 

vulnerability they try to exploit. The fact that ―normal‖ devices are less susceptible to infections 

compared to ―rooted‖ ones is also confirmed by the data presented in the next section.  

Summarizing, mobile devices can be vulnerable to attacks similar to those of their stationary 

counter-parts, like supply chain attacks and remote attacks through malicious web-sites, mails or 

similar. In common with portable devices like laptops we find attacks that leverage local access 

like Wi-Fi, Bluetooth and NFC (Near Field Communication). However, they are also more 

exposed to physical attacks, given they are more easily accessible: removing the memory card 

or connecting them to a malicious device via USB is relatively straightforward. Attacks through 

the mobile network are also exclusive to this class of devices: malicious base-stations, 

vulnerabilities in the base-band processor, and faulty processing of SMS and MMS are also all 

possible entry points to the system. 
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One last observation is that it is difficult to classify what code or activity is actually malicious. 

Based on different definitions, one can get different statistics on the infection rates of active 

devices. For instance, some apps can be considered malicious even if they do not exploit any 

vulnerability. A lot of sensitive data can be collected from a device simply by having 

completely legitimate permissions. Examples are: contact lists; position; IP-address; and phone 

number. Again, the user can make a big difference by wisely choosing what to trust and what 

not at installation time. The numbers reported in the next sections come from documents that 

may have different definitions of malware and harmful code, but since they all seem to validate 

each other we will not discuss these definitions in detail. Just to give an example, though, as of 

11/1/2014 Google used the term PHA (Potential Harmful Applications) to indicate the 

following categories: Generic PHA; Phishing; Rooting Malicious; Ransomware; Rooting; SMS 

Fraud; Backdoor; Spyware; Trojan; Harmful Site; Windows Threat; Non-Android Threat; WAP 

Fraud; and Call Fraud [27]. 

Therefore, although the existence of a vulnerability can in principle constitute a threat, it is not 

enough alone to claim that the system is not secure, because whether the threat can be realized 

in practice depends also on the existing attack surface. For instance, Java-script vulnerabilities 

in a web-browser may not be exploited if Java-script is disabled, or if no internet connection is 

available. The reader should keep this in mind when considering the infection rates of modern 

mobile devices reported later in this chapter. Those numbers are not a definitive indication of 

their security, but they indicate only how secure they are in average given the typical usage and 

configuration in a global consumer market setting.  What they can tell us, is which attack 

vectors are more likely to be used in modern mobile devices. This knowledge can later help us 

to reduce the attack surface by adopting additional security mechanisms, mitigations and careful 

usage, so that adequate security may be provided in specific scenarios, despite existing 

vulnerabilities.  

3.2 Overview of security reports and statistics 

Here we give an overview of the status of vulnerabilities and known infection rates based on 

publicly available reports and sources. Most of this data comes from the feedback that antivirus 

companies get from the devices on which their software is installed, so it gives only a partial 

sample of the complete picture. In the case of Android, however, the feedback comes from the 

Google services installed on the majority of Android devices and it gives a much more 

comprehensive overview compared with antivirus software feeds. Also, some statistics refers to 

the number of devices potentially exposed to a threat, i.e., which have an unpatched 

vulnerability, while others refers to actually infected devices, i.e., where some vulnerability was 

actually exploited. We will, for what is possible, distinguish between the two. One thing we 

have not considered here are the reports investigating the number of apps containing malicious 

code or new malware found in the wild. Those numbers would only give an idea of the potential 

threats around, but not how effective they are, which is our main concern.  
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3.2.1 Cross-platform vulnerabilities 

Some vulnerability might affect more than one platform because they are found in some 

standard common component, library or protocol used by all of them. Examples are the SSL 

vulnerabilities HearthBleed
31

 and Freak
32

 found in the Open SSL library used by Android, iOS 

and BlackBerry. Vulnerability in browser plug-ins like Adobe Flash
33

 can also affect various 

platforms simultaneously. It is not clear whether any of these vulnerabilities was at any point 

exploited on mobile devices. aseband processor vulnerabilities may be platform specific, but 

often the same firmware and radio processor component is used by different manufacturers in 

their devices [28] and vulnerabilities can be leveraged through the mobile network by using 

false base-stations as it was recently demonstrated for a Samsung device
34

.  

3.2.2 Android 

As shown in Figure 3.2, Android is consistently reported as the platform most exposed to 

attacks, with 99% of all mobile malware targeting it [29]; this despite having less than half of 

the documented vulnerabilities compared with iOS
3536

. There are mainly three reasons for this 

[30]. One is that Android is the most widespread platform on the mobile market, and the sheer 

number of potential targets alone makes it particularly attractive for attackers. The other is that 

Android is very fragmented, which makes it more difficult to keep all existing versions up-to-

date, especially since the responsibility for patching the different versions falls to the specific 

manufacturer rather than Google itself. This means more vulnerable targets. Last, but not least, 

the possibility of easily enabling the installation of untrusted sources (side-loading) without the 

need of rooting the devices has led to the flourishing of third-party app-stores where the vetting 

process of applications is often non-existing.  Here it is extremely easy to publish apparently 

legitimate apps that have been repackaged with some hidden malicious code and then self-

signed by the attacker. 

                                                           
31 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160 
32 https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0204 
33 http://www.adobe.com/support/security/bulletins/apsb13-11.html 
34 http://www.theregister.co.uk/2015/11/12/mobile_pwn2own1/ 
35 https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224 
36 https://www.cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49 
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Figure 3.2   Despite fewer vulnerabilities, Android is the most targeted platform. 

 

However, the data in the Google report on Android security for 2014 [27], confirmed also by 

other sources [31, 32, 33], reveals some interesting details that indicate that this difference is not 

due to inadequate security, but rather other external factors. In fact, it appears that worldwide 

only less than 1.3% of Android devices is infected by some sort of PHAs. Of course, 1,3% of 

hundreds of millions of devices is still a big number, but if the reason why Android stands for 

most infections among mobile platforms wes just bad security, we would expect much higher 

infection rates. Instead, in accordance with our earlier observations, it turns out that if we 

consider only devices that are not rooted and that only download apps from Google Play store, 

the number of infected devices is less than 0.1% as shown in Figure 3.3. Non-rooted devices 

that download from other stores than Google Play (side-loading), account for 0.7% of the 

infections, while devices with some PHAs installed (including also rooting apps) are in average 

around 0.5% of the total. In other words, devices whose integrity has not been compromised by 

rooting or with side-loading enabled, and that are therefore comparable with closed systems like 

iOS and BlackBerry, are an almost negligible percent.  It is also interesting to see how there are 

huge variations by locality. In some countries like China where Google services are not 

available and side-loading and rooting are therefore necessary to use Android devices, the 

percentage of infected devices reaches peaks of over 7%. One thing to point out is that Google 

did not start detecting devices with side-loading before the last quarter of 2014, so it is a 

somewhat limited sample time-wise. Nevertheless, the amount of infected devices during 2014 

with and without side-loading, excluding rooting applications, has been lower than 0.5 %. 
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Figure 3.3   In practice the number of infected Android devices that have not been rooted and 
only use Google Play to install apps is around 0.1% of all Android devices 
worldwide. The reason why so much malware targets Android is that the amount of 
devices that download from unsafe sources or are rooted, and therefore are easier 
to compromise, is much higher than for other platforms. 

 

The incidence of exploitation attempts for other types of vulnerabilities outside of Google Play 

is also discussed in the Google report, but it is used mostly to show the effectiveness of the 

Verification Apps Tool and not very relevant to this report. The research in [27] has also not 

uncovered any large scale malicious exploitation attempt of other SSL vulnerabilities. 

This does not mean that downloading apps only form Google Play guarantees 100% protection. 

There is, after all, a small percent of such devices that are somehow infected. This can be 

explained in various ways. One is that not all malicious apps can be detected by Bouncer, and 

therefore some end up in Google Play [34, 35]. The other is that legitimate, innocuous apps 

contain exploitable vulnerabilities and can be used as an attack vector once installed [34]. There 

are even some documented cases in which malicious apps where pre-installed on the phone, 

meaning that the attacker managed to subvert the supply chain
37

. Additionally, vulnerabilities 

that make it possible to inject malicious code into legitimate applications without altering the 

original digital signature
38

, or create fake certificates
39

, could also be used to install malware 

without enabling untrusted sources, or pushing malicious updates on legitimate installed apps. 

Besides, due to the high fragmentation of Android versions, it is also possible that most 

                                                           
37 https://blog.lookout.com/blog/2014/12/04/deathring/ 
38 https://bluebox.com/uncovering-android-master-key-that-makes-99-of-devices-vulnerable/ 
39 https://bluebox.com/android-fake-id-vulnerability/ 
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infections affected older versions of the platform that still have many vulnerabilities that have 

been patched in newer devices. 

Finally, it is quite certain that many infections have not been detected at all, either because the 

infected device does not use Google services or any anti-virus, or because the exploited 

vulnerability is either still unknown or difficult to detect. Other known vulnerabilities 

discovered recently, like Stagefright
40

, could also have been exploited using other attack vectors 

than side-loaded application and network access, making it unclear whether someone has been 

affected by them. A further possibility is that an attacker can have physical access to the device, 

and bypass security if the USB debugging option is enabled, and the screen-lock is either not 

active or easy to bypass. Even installing forensics tools in the boot partition to read volatile 

memory would be possible given the right conditions [36]. 

3.2.2.1 TrustZone TEE 

We mentioned in Section 2.2.2 that some OEMs provide a TEE implemented in TrustZone, in 

addition to their customized Android OS. Unfortunately, exploits have been found also for this 

―secure‖ solution. In 2013 the Motorola boot-loader was unlocked through a vulnerability in the 

TrustZone kernel
41

; the same year Thomas Roth showed how to create TrustZone based rootkits 

[37]; and Di Shen showed how he hacked the Huawei’s TEE at Black Hat 2015 [38]. Wrong 

implementation of secure functionalities using TrustZone has also been shown to be a real 

security problem [39]. 

3.2.3 iOS 

As mentioned in the previous section, iOS has actually more documented vulnerabilities than 

Android, but despite this it has generally been considered more secure, and has been the 

platform of choice for the enterprise market [40]. The main reason lies probably in its closed 

nature that makes it much more difficult to allow for untrusted apps to be installed, and easier to 

keep it updated. iOS devices need, in fact, to be jail-broken in order to use third-party app-

stores, and this in turn requires the exploitation of some vulnerability in the system. Still, around 

8% of iOS devices globally are estimated to have been jailbroken [40], and it is mostly these 

devices that have been targeted and successfully infected by malicious code, at least until 

November 2014. Before that, in fact, only two cases were known of malicious apps that had 

bypassed security controls and had been published on iTunes (and could therefore be installed 

on non-jailbroken devices): the LTBM adware and the FindandCall worm. Then WireLurker 

was discovered [41], and Pawn Storm
42

 and Yispecter
43

 followed the next year. Another 

potential attack was also found in 2014 called Masque Attack
44

. What all of these have in 

common, is the new attack vector used, namely ad-hoc (or in-house) provisioning through 

enterprise certificates [42]. A proof of concept showing how a similar attack could be performed 

                                                           
40 https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/ 
41 http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html 
42 http://blog.trendmicro.com/trendlabs-security-intelligence/pawn-storm-update-ios-espionage-app-found/ 
43 http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-

private-apis/ 
44 https://www.fireeye.com/blog/threat-research/2014/11/masque-attack-all-your-ios-apps-belong-to-us.html 
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by connecting the device to a fake charger was also shown in 2013 [43], but since then some 

new security mechanisms have been implemented to prevent that specific attack. 

Apple provides, in fact, an alternative and legitimate way to install apps on non-jailbroken 

devices that bypasses iTunes and all the security controls: enterprise provisioning. This method 

allows enterprises to install or push their own apps without going through iTunes, but in order to 

do that a special enterprise certificate must be used to sign them. Such certificates are harder to 

obtain than usual developer certificates
45

, exactly because they might be misused in the way 

they did. Still, someone went to the trouble of setting up a fake company and paid to obtain such 

a certificate, in order to spread malware. Also, WireLurker could spread only through USB 

connection to an infected MAC workstation (where it is possible to install untrusted apps), 

while Yispecter could also be directly downloaded and installed on the mobile device.  

Thus, attacks on iOS are also possible and just as dangerous as on Android. 

3.2.4  BlackBerry 10 and Windows 10 Mobile 

These two mobile platforms have a very small share in the mobile market, which also means 

that they are not a particularly interesting target for most attackers. This may be one of the 

reasons why not many vulnerabilities and cases of exploitation are known for them. Windows in 

particular, just came out a couple of months ago, so there is no known exploited vulnerability as 

of yet. However, one observation we can make is that with ―universal apps‖ there is a risk that 

vulnerabilities found on Windows Desktop applications may also apply to their mobile 

counterpart, and that the effort to give a unified experience to mobile and desktop users may 

also lead to common vulnerabilities. 

As far as BlackBerry 10 is concerned, quoting from [19]: ―One public jailbreak thus far has 

affected QNX-based BlackBerry devices — DingleBerry, released in November 2011
46

. No 

jailbreaks have directly affected BlackBerry 10‖. In general only few vulnerabilities are 

reported
47

, and many seem to belong to the cross-platform type mentioned in Section 3.2.1. 

Being that BlackBerry is mostly used in governmental environments, it can also be the case that 

some successful targeted attacks have been performed given the high profile of the targets, but 

that they have been kept quiet or never discovered. Research is also very limited compared to 

Android or iOS, as we are aware of only 4 such works [44, 45, 46, 47, 48]. 

3.3 Discussion 

One problem of the analysis in this chapter is the unbalance in the available data for the 

different mobile platforms. While for Android we have both various independent sources like 

anti-virus companies and Google itself that share their data, much less extensive statistics are 

                                                           
45 https://developer.apple.com/programs/enterprise/enroll/ 
46 http://crackberry.com/so-you-want-rootjailbreak-your-blackberry-playbook-dingleberry-here%E2%80%99s-how-do-it 
47 http://support.blackberry.com/kb/articleSearch?language=English&keyword=vulnerability 
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available for iOS and close to nothing for BlackBerry and Windows 10. Thus, one should not 

conclude that one platform is more or less vulnerable than others solely based on this data. 

Nevertheless, one thing that we can conclude is that the preferred carrier for malware in mobile 

platforms seems to be malicious apps. Android is not surprisingly the most exposed due to its 

overwhelming market-share, the possibility of side-loading and the large number of third-party 

app-stores present on the Internet, but we saw how iOS also is affected thanks to a similar type 

of mechanism based on enterprise certificates, although at a smaller scale.  

Ignoring intentionally rooted and jailbroken devices, or devices that must use side-loading 

because of the lack of official app-store availability in a certain geographical area, we are still 

left with a small percent of infected Android devices that apparently are used and configured 

correctly. In Section 3.2.2 we tried to explain what other attack vectors could have been used in 

these cases, but we cannot be certain, so we can only assume that despite much advances in 

security, mobile platforms still are vulnerable to various types of attacks, and that attack 

strategies evolve continuously in order to exploit any possible weakness in the security model. 

However, that so very few devices in percentage have been affected is an indication that 

security does work quite well in general, given that those numbers are indeed representative of 

the actual situation, and that the situation is much less dramatic than often depicted in the news. 

The better security is implemented at platform level and integrated with the infrastructure, the 

more difficult it becomes for the attackers to find easy attack vectors and for users to 

intentionally or accidentally disable security.  

Still, perfect security does not exist. Some malicious apps will always slip through the official 

app-stores security controls, and some user will be tricked into installing it. Users will also often 

not like the limitations imposed by manufacturers and will try to break them exposing their 

devices to multiple threats. Social engineering will also be a prominent threat no matter what 

security is in place.  However, most of these problems affect mostly the mass consumer market, 

where it is statistically more likely to meet all necessary conditions for a successful attack. In a 

more controlled and restricted environment, where it is possible to enforce centralized security 

policies, enhance security, limit risky activities and educate users, many of these threats could 

be eliminated or at least mitigated
48

, although targeted attack may become more prominent. In 

the next chapter we look at existing approaches to achieve different level of controls on a 

mobile device.  

 

                                                           
48 A report from Lookout seems to contradict this last statement [40],a s they found various malware on devices associated with 

different enterprises, but they do not specify what type of device management solution they used and how they were configured. 
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4 Possible approaches to enhance security 

The previous chapter emphasized how most security threats come from installing untrusted 

apps, either by using side-loading, or visiting malicious web-sites or not carefully reading 

warning messages. Rooting or jailbreaking a device makes things even worse by deactivating 

critical security mechanisms. If COTS mobile devices are to be adopted for security critical 

tasks, we need at the very least to eliminate these prominent threats, and try to mitigate the 

remaining ones. 

The factors that can affect the trust we can have in a device and its security, are mainly four: its 

intrinsic security; the type of usage; the owner; and the user. With the first, we mean the 

platform security that is already built in the device, which gives us a baseline security: the 

software and firmware security mechanisms, the hardware security, and possibly its 

certifications. In other words, what we have seen in the first two chapters. The type of usage can 

include: the applications that are going to be installed on the device, its configuration, the type 

of maintenance it is subject to, the tasks it will perform, the data it will handle, and its physical 

protection. We distinguish then between owner and user as they may not necessarily be the 

same. The owner is the administrator, who has the highest privileges on the phone and can 

decide what can or cannot be installed and which configuration to enforce. The user is the one 

that has physical control of the device in practice and can potentially expose it to most threats 

by misusing it, losing it or intentionally bypassing the predefined configuration. In addition we 

should also trust the infrastructure, but this is a separate topic. 

The relationship between owner and user is quite central in recent mobile devices, which offer 

native support for three types of ownership models. The reason is that steadily more enterprises 

understood that it can be advantageous to let their employees use their private devices also for 

work activities, but it has so far been challenging to find the right balance between the degree of 

control needed by the enterprise to trust the device and the users’ right to freely use their 

devices. This is changing thanks to new security mechanisms which enterprises can leverage to 

enforce their security policies without necessarily taking complete control of the device. Still, in 

some environments with even higher security requirements like classified military network, 

even having complete control of the device may not suffice. In this case additional 

functionalities and assurance may have to be implemented in the platform itself, or dedicated 

solutions are to be developed.  

In the next sections we discuss the different ownership models and what they can give in terms 

of security when applied to commercial devices, and how commercial and military actors are 

also trying to develop dedicated secure solutions by using commercial mobile platforms as a 

starting point.  
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4.1 Ownership models supported by COTS device 

The latest releases of all mobile platforms we reviewed in the first two chapters come now with 

native support for BYOD solutions, which until now had to be especially developed as add-ons 

with limited capabilities. Mainly three ownership models are provided: 1) the user retains full 

control over the whole device, 2) the enterprise can control a part of the device and 3) the 

enterprise has full control. Each can be suitable for different types of scenarios, with varying 

degree of security. 

4.1.1 User ownership 

There are some situations when it may be desirable to let people use some service or application 

on their own devices, without any particular control or requirement. The reasons can be many. 

One scenario is emergency situations, where it may be essential to collect as much information 

as possible to create a complete picture of the situation. In this case any bystander or responder 

can just download an app on their phone and use it to take pictures, videos, and report different 

kind of events.  Another is that a company may not have the resources to buy, configure or 

maintain some dedicated devices, and therefore are willing to accept the risk of letting their 

employees use their private devices for work related tasks. This use model implies, in fact, that 

the enterprise has virtually no control on the device, which may already be compromised by 

some malware, be rooted or generally not trustworthy.  

In this model, the enterprise service comes as a dedicated app(s), and all security would have to 

be implemented in the application itself, by leveraging either the platform security mechanisms, 

or custom security packaged within the app itself. One can potentially achieve a good level of 

security given that the app is well written, includes proper encryption, authentication and secure 

communication components, and that the underlying platform is not already compromised. The 

problem is that we cannot put much trust in the device itself as we have no reliable way to 

assess its trustworthiness. Hence, the risk of compromise is relatively high. Still, interesting use-

cases, where a risk analysis may show that the benefits outweigh the potential risks, surely exist.   

4.1.2 BYOD: shared ownership 

A more advanced version of installing just some applications on a private device consists in a 

complete BYOD solution. Until now, the main limitation was that users had to completely give 

up control of their devices in order to install company software that enforced the company’s 

security policies and monitored the status of the device. This was especially bothersome when 

the security policy required wiping the memory of the phone if a violation was detected, 

including the user’s private data, or made the user unable to install their favorite apps. However, 

newer devices support natively a partitioning of the phone into a personal and a work profile, 

which are managed at system level to guarantee separation between the two. In this way, the 

employer can own the work profile, while the user can still control the device itself and the 

personal profile. Each profile would have its own applications, policies, dedicated encryption, 

authentication, and data. Deleting the work profile, would therefore not affect user data. We 
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have seen examples of such solutions earlier in the report: Samsung Knox, Android for Work, 

iOS for Enterprises and BlackBerry Balance. 

It is important to remember that these solutions are still based on the assumption that the user 

cannot root or jailbreak the device without that being detected by the security mechanisms 

underlying the work profile, which can then be blocked for access. A malicious user may still be 

able to compromise the system before activating the work profile exploiting new vulnerabilities 

that can go undetected before the work profile is activated, and therefore potentially break 

company policies at a later moment. Still, the bar is much higher than for the previous 

ownership model, as these BYOD solutions also have effective mechanisms to detect whether a 

device has been tampered with, and lock the user out of the work environment. An example is 

the KNOX bit
49

 used in Samsung devices with Knox, and the automatic wiping of the device in 

case the boot-loader is unlocked in order to install a new custom OS, which is present in most 

devices. 

4.1.3 Enterprise ownership 

Company owned devices differ from usual BYOD solutions in that the device is bought and 

configured by the company before being handed over to the employee. It can also be the case 

that no personal profile is set up at all, making the device at all effects, just a work tool. This 

guarantees better control to the company that knows the initial status of the device when the 

work profile is configured, and can also regularly recall devices for inspection and 

reconfiguration. In this case it is easier to monitor and detect compromise attempts, although 

there is always a chance of exploitation. 

4.1.4 Management solutions 

A BYOD solution needs some form of device and application management in order to define 

and enforce security policy when the device is both on-line and off-line. Mobile platforms 

provide built-in security functionalities for these purposes, but additional management software 

that builds on them is needed to achieve good usability and efficiency. There are mainly four 

types of tools one can use to administrate different aspects of the device: 

 Mobile Device Management (MDM) deals with the administration and 

configuration of the device itself. For instance: enrolment; configuration; 

enforcement of password, protected connections and other policies; application and 

patch provisioning; and remote monitoring. These tools are implemented using 

application programming interfaces (APIs) released by mobile operating system 

providers
50

. 

                                                           
49 https://www.samsungknox.com/en/faq/what-knox-warranty-bit-and-how-it-triggered 
50 http://asmarterplanet.com/mobile-enterprise/blog/2014/09/mdm-mam-emm.html 



  

    

 

 44 FFI-RAPPORT 16/00319 

 

 Mobile Application Management (MAM) provides individual app administration, 

provisioning and monitoring usually through a dedicated enterprise appstore. Some 

solutions provide also an SDK to add security extensions to applications [49]. 

 Mobile Information Management (MIM) or Mobile Content Management (MCM) 
tools are used to protect data. This means encryption and strong authentication 

used to access data on the device or from the device. In some cases even secure 

containers where applications can run securely. 

 Enterprise Mobility Management (EMM) suits provide all or some of the above 

listed functionalities in a consistent framework. 

Although it is possible to exercise a good deal of control on a device by using these tools, one 

must not forget that their functionalities rely on the assumption that the underlying security 

mechanisms offered by the OS and the hardware are working correctly. There is unfortunately   

no sure way of detecting whether a device has been rooted or jailbroken [50, 51]. An overview 

of commercial EMM can be found in [49]. 

4.2 Dedicated solutions 

Although a managed enterprise owned device can already provide a degree of security adequate 

for many situations, there are situations when additional features at platform level or even 

higher security are required. In this case dedicated solutions are usually developed. In particular, 

here we are interested in commercial technology that has been hardened for military or 

governmental use, and in military projects experimenting with the possibility of adopting 

commercial mobile devices for tactical use.  We do not consider dedicated products specifically 

developed from the ground up for higher assurance.  

4.2.1 Commercial (based) products 

In the U.S., the NSA (National Security Agency) has started a the ―Commercial Solutions for 

Classified‖ (CSfC) program to accelerate the adoption of commercial products for use in 

governmental and military offices, including mobile devices, and redacted a guide that defines a 

layered approach to harden the security of mobile devices in order to handle sensitive 

information securely: the NSA’s Mobility Capability Package
51

. Devices that follow these 

guidelines and are approved according the Protection Profile for Mobile Device Fundamentals
52

 

are listed in the ―Commercial Solutions for Classified Program Components List‖
53

. Among 

them we find
54

: the Boeing Black phone
55

; Samsung Galaxy Note 4 with Android 5; Samsung 

Galaxy S6; Microsoft Windows 10; Samsung Galaxy Note 5 and Tab S2; and Apple iOS 9. 

However, whether they can only handle sensitive but unclassified information or also higher 

                                                           
51 https://www.nsa.gov/ia/_files/mobility_capability_pkg_vers_2_3.pdf 
52 https://www.niap-ccevs.org/pp/pp_md_v2.0.pdf 
53 https://www.nsa.gov/ia/programs/csfc_program/component_list.shtml 
54 https://www.niap-ccevs.org/pp/PP_MD_v2.0/ 
55 http://www.boeing.com/assets/pdf/defense-space/ic/black/boeing_black_smartphone_product_card.pdf 
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classification levels is unclear. Given that the guidelines mainly require standard security 

mechanisms like those presented in Chapter 2, we assume that it is the former case, unless 

additional security measures and a dedicated infrastructure are in place to form a complete 

secure solution as indicated in the Mobile Security Reference Architecture document by Federal 

Chief Information Officers (CIO) Council
56

. 

The Blackphone by Silent Circle
57

, which may appear as an example of a particularly secure 

phone, focuses mostly on privacy rather high-level security. Still, removing third party services 

from Google and allowing the user to deactivate privacy sensitive peripherals, can indeed 

provide better security than most other commercial devices, but it is unlikely good enough for 

classified use. In the same category we find the Cryptophone 500i by GSMK, which also runs a 

hardened version of Android, with dedicated baseband protection and strong encryption, 

configurable security profiles and verifiable source code
58

. 

A commercial security solution that has been used in conjunction with other technologies to 

develop products that may be approved for higher classifications like RESTICTED is Samsung 

Knox. The Green Hills high assurance separation kernel Integrity for instance has been 

integrated in the Samsungs Knox mobile enterprise family to offer strong isolation in Android
59

. 

We speculate that this solution adds a layer of virtualization so that the Knox environment can 

run in a separate partition with its own kernel and therefore offer better isolation. It is not clear 

whether commercial Samsung devices actually adopt this solution. Another example is the 

Tiger/R from Sectra, a known producer of secure mobile phones for classifications as high as 

SECRET
60

. This phone runs on a security enhanced version of the Knox OS and is designed for 

use at the RESTRICTED security classification level in Europe
61

. A similar level of certification 

was also announced for a specific BlackBerry solution in Germany
62

.  

Finally, as part of the CSfC program, the Defence Information System Agency (DISA) 

announced that their Defense Mobile Classified Capability-Secret (DMCC-S) is fully 

operational. A mobile phone for use at the SECRET classification based on commercial 

technology is in fact to be expected later this year
63

. Apparently it will be able to connect to 

SECRET networks through the Secret Internet Protocol Router Network (SIPRNet) and will not 

store data at rest, but provide email and secure voice communications via a secure Voice over 

Internet Protocol (VoIP) capability
64

. 

                                                           
56 https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-Reference-Architecture.pdf 
57 https://www.silentcircle.com/products-and-solutions/devices/silent-os/ 
58 http://www.cryptophone.de/upload/files/46/original/CP500i-Brochure.pdf 
59 http://www.ghs.com/mobile/products/samsung-knox-hypervisor/ 
60 http://communications.sectra.com/news-and-media/press-releases/eu-approves-new-model-the-sectra-tiger-secure-mobile-phone-
secret 
61 http://communications.sectra.com/news-and-media/press-releases/samsung-and-sectra-in-cooperation-secure-smartphone-

european 
62 http://press.blackberry.com/press/2013/blackberry-10-receives-nato-approval-for-restricted-communicatio.html 
63 http://www.c4isrnet.com/story/military-tech/mobile/2015/09/03/pentagon-top-secret-smartphone-expected--fall/71648428/ 
64 http://www.disa.mil/enterprise-services/mobility/dmcc/secret 
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4.2.2 Dedicated proprietary solutions 

There are also mobile solutions that are not based on commercial technology found in COTS 

products, but are specifically developed from the ground up to achieve higher assurance and 

security. We will not list them all in this report because they are out of our scope and details are 

usually disclosed only under Non-disclosure Agreements (NDAs), but just to give an idea to the 

reader of what type of products we mean, we can mention the mobile version of Pike OS high-

assurance kernel supporting TrustZone
65

 and the Secunet mobile solution based on their SINA
66

 

kernel. 

4.2.3 Military research projects 

Given the advantages of commercial smartphones and tablets, it is a natural to wonder whether 

there is a real possibility to use them in a military setting, more specifically on the battlefield. In 

this case, devices are to be used in rough environments, where neither mobile nor Wi-Fi 

connectivity may be available or allowed, with opponents that have advanced cyber- or 

electronic warfare capabilities and where reliability and confidentiality are critical.  

On one hand, most commercial devices are not designed to withstand intense, prolonged and 

rough use; it is not possible to interface them with tactical radios or satellite communications; 

their cryptographic suites do not support proprietary military grade algorithms; hardware keys 

and certificates are under the control of the manufacturer; and they would most likely not be 

possible to certify for a high enough assurance level as they are. On the other hand, much of the 

smart technology we are used to in our daily lives is not available in a military context, and 

could potentially bring huge advantages in many situations. It is not surprisingly then, that there 

are various other military research projects looking at how to adapt commercial mobile device 

for military needs. Most of these projects are naturally classified and it is not possible to gather 

information about them, but for at least two of them there is some documentation that can 

reflect what kind of solutions and approaches are being tested.  

The first is the Transformative Apps or TransApps project from DARPA
67

. The focus of this 

project has been mainly to develop a platform independent military app-store for tactical apps, 

and develop a new agile approach to app developing that includes real-time soldiers’ feedback. 

However, in order to be able to test this in the field a platform with adequate security was 

needed, so COTS devices running Android ―with custom multilayered security‖ have been used 

in practice. This refers probably to the Mobile Armour program that contracted a security 

enhanced Android to Invincea
68

 in 2012. Details on these security enhancements are 

unfortunately not available, but among other things, they tested support of tactical radios as an 

alternative to mobile and wireless communication. 

                                                           
65 https://www.sysgo.com/news-events/press/press/details/article/sysgo-demonstrates-pikeosTM-and-androidTM-running-arms-

trustzoneR/ 
66 https://www.secunet.com/en/topics-solutions/high-security/sina/sina-tablet-s/ 
67 http://www.darpa.mil/attachments/DrPrabhakar-26Mar14.pdf 
68 https://www.invincea.com/2012/06/defense-advanced-research-projects-agency-darpa-awards-invincea-21-4-million-contract-to-

create-secure-android-smartphones-and-tablets-for-u-s-army/ 
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The other project we are aware of is the Dutch PROMISE [52]. PROMISE is an acronym for 

PROject Multi-touch Information System Experiment. Similarly to TransApps, this project aims 

at delivering a complete solution for tactical systems including a dedicated military app-stores 

and specialized apps, based on commercial mobile devices and possibly hardening of available 

apps. They also claim that by using MDM solutions and other commercial security measures it 

will be possible to certify this solution for ―RESTRICTED‖ level. At the current stage their 

platform security relies on a customized Android, where the following security additions were 

made to the kernel: PLE (payload encryption solution) VPN for network security; Applocker, to 

only allow PROMISE apps on the smart devices; removing all Google API’s and internet 

access; unlock patterns as authentication; stringent policies such as screen-lock timeout; and use 

of a dedicated app store (open source). However, this means that rooted devices were used, 

without any central management solution. These shortcomings are recognized by the project, 

and collaboration with manufacturer to implement the required changes in locked devices and 

secure MDM solutions are recommended as future work. Use of SIM cards as crypto controllers 

is also suggested as a possible solution to the key management problem. 

4.3 Discussion 

From the overview given in this chapter, it is clear that there are various solutions that can be 

adopted when using commercial mobile devices for security sensitive tasks. Each solution can 

provide a different level of security at the cost of flexibility, economic impact and amount of 

resources needed to deploy and maintain the solution. Table 4.1 summarizes the main aspects of 

the different ownership models. It is obvious that the more control the enterprise, in our 

example the Department of Defence, has over the device, the more trust we can have that the 

security mechanisms are active and working as expected. The reason is that, among other 

things, security enforcement can be extended from a single app to more layers of the device, so 

that it becomes more and more difficult to circumvent. Naturally, the more aspects of the device 

we need to control the more tools, expertise and resources we need, so that costs also will 

increase, including the acquisition cost of the devices themselves.  At the same time, the more a 

solution is integrated with a specific platform, the less flexible it becomes in the event that 

devices need to be replaced or updated. In fact, while an app can be adapted relatively quickly 

for a new version of the OS or a new device, a customized OS would require much more work.  

One other reason why controlling more aspects of the device gives better security is that this 

will reduce the number of different actors involved in the mobile platform. As we discussed in 

Chapter 2, the more actors in Error! Reference source not found. coincide with the same 

entity, the fewer adversaries we need to account for and the better the security mechanisms can 

be integrated across different layers of the platform. Table 4.2 shows an example of how the 

Department of Defence could assume steadily more roles in the different ownership models and 

therefore minimize the potential adversaries. The red boxes indicate actors that cannot be 

completely trusted because not directly under our control; dark green boxes are the actors we 

can fully trust; while light green boxes those that we can partly trust. We see how in the extreme 

case where a customized OS is installed on the devices, with a dedicated app-store, dedicated 
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apps and even a dedicated mobile network, what is left as potential untrusted actors besides 

external attackers are the manufactures and the users. The reason why the manufacturer box in a 

custom solution is colored both red and green is that manufacturers of some components may be 

trusted, but it is very difficult to control absolutely all components a mobile device is composed 

of. 

 

 

OVERVIEW OF DIFFERENT OWNERSHIP MODELS 

 USER 

OWNERSHIP 

SHARED 

OWNERSHIP 

ENTERPRISE 

OWNERSHIP 

CUSTOM 

SOLUTION 

TRUST IN 

SECURITY 

MECHANISMS 

Low Low-Medium Medium-High High 

SCOPE OF 

ENFORCED  

SECURITY 

Single 

Application 
Work Partition 

Application 

Layer And 

Platform 

Configuration 

Kernel And 

Above (possibly 

pre-boot) 

ACQUISITION 

COST 
Low Low-Medium Medium-High High 

MAINTENANCE 

COST 
Low Low-Medium Medium-High High 

PORTABILITY High Medium-Low Medium Low 

Table 4.1    Summary of the pros and cons of the different ownership models described in this chapter.  

 

However, threats from external attackers could be mitigated by enforcing strict security policies 

that could eliminate many common attack vectors and reduce the attack surface. For instance: 

Internet access can be precluded and only proprietary encrypted local networks are used; no 

third-party apps are allowed to be installed besides those specifically developed and approved 

for the tasks at hand; no integrated services can monitor device activity and send potentially 

sensitive data to third-parties; mobile network is most likely not used, or a dedicated one 

managed by enterprise itself deployed. This leaves pretty much only supply chain attacks, 

insiders and targeted attacks as potential threats. On the other extreme instead, when we have 
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commercial devices completely owned by the user, any of the actors involved in the mobile 

platform can become a potential adversary against which is much more difficult to protect. 

Therefore, most common attack vectors which could be excluded in a controlled environment 

are still present.  

 

HOW OWNERSHIP MODELS AFFECT SECURITY  

 User ownership 
Shared 

ownership 

Enterprise 

ownership 

Enterprise 

ownership + 

custom OS  

Administrator User Defence/User Defence Defence 

Developers Third party 
Defence/ Third 

party 
Defence Defence 

Marketplace 

provider 
Third party 

Defence/ Third 

party 
Defence Defence 

Mobile operator Third party Third party 
Defence/ Third 

party 
Defence 

Platform 

provider 
Third party Third party Third party Defence 

Manufacturer Third party Third party Third party Third party 

Users Civilians 
Civilians/Military 

personnel 

Military 

personnel 

Military 

personnel 

Table 4.2     Assuming the Department of Defence as the enterprise that needs to trust the device, 
we can see how the more aspects of the platform are under its control, the more 
actors coincide with the enterprise itself. This leads to more consistent system and 
fewer adversaries to defend against.  

 

Thus, commercial solutions can probably be made good enough for typical office use like e-

mail and access to the enterprise network. In any case situations where sensitive information at a 

classification level not higher than RESTRICTED is to be handled, given that a sufficient level 

of control can be exercised. Management solutions are therefore necessary in order to correctly 

configure and manage the devices so that the possible attack vectors are reduced to a minimum. 
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Adequate infrastructure must also be in place, as indicated for instance in the Mobile Security 

Reference Architecture by the CIO Council
69

. Approval for even higher classifications however, 

requires either high-assurance solutions which are not found in COTS products, or very strict 

policies like that all data is to be only stored in volatile memory, external secure elements must 

be used for authentication and key storage and only private encrypted local networks are to be 

used. 

When it comes to tactical use, we have seen how some projects are trying to adapt commercial 

technology to more military-specific needs. A common trend seems to be the use of a hardened 

version of the Android OS installed on COTS hardware. This choice is quite natural since an 

open system is necessary in order to implement the additional capabilities required by a military 

tactical setting. However, this reduces significantly some of the benefits of using commercial 

products in the first place. Most of the security of COTS devices comes from a tight integration 

between hardware capabilities and software mechanisms that may be lost once the original OS 

is replaced with a customized one. For instance, in order to install a new OS, one would have to 

root the device and unlock the boot-loader, and therefore lose any type of device integrity 

verification. As a consequence, most security extensions like hardware-protected keys installed 

at manufacturing time, may become unavailable. The new OS would also have to be maintained 

by someone else than the device manufacturer, so that new drivers would have to be developed 

each time a new model comes to the market, and security of the custom components would 

depend entirely on those who developed them, rather than, for instance, Google or Apple, and 

the millions of users that test them every day. Resources needed for configuration, provisioning, 

and maintenance would also increase. Some of these problems seem to be avoidable in some 

cases, as big manufacturers like Samsung appears to be willing to lock the custom platform to 

their devices at manufacturing time [53], so that rooting would not be necessary, but they would 

not provide updates and service. This would also result in a vendor-lock. Nevertheless, in order 

to achieve approval for higher classification levels, such modifications are probably 

unavoidable, and it may still be more convenient to use commercial technology as a starting 

point rather than designing and developing a completely new device from scratch. Additionally 

one of the other main advantages of commercial smart technology are still preserved, namely: 

familiar interfaces which could significantly reduce training time and increase effectiveness of 

the solutions; faster development of new services; more flexibility; low hardware costs; and 

short time-to-market of the latest available technology. 

 

 

 

                                                           
69 https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-Reference-Architecture.pdf 
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5 Risk mitigations and challenges – scenario 

analysis 

Despite all the security efforts, it is also clear that there are limitations to what a commercial 

mobile device can protect. Unlike stationary equipment, their mobility makes them more 

vulnerable to physical attacks as they are easier to be lost, stolen or left unattended. Being 

mostly based on technology that is publicly available, they can also be subject to reverse 

engineering or other types of analysis that can uncover new vulnerabilities. Besides, it is not 

always feasible to adopt the most restrictive and expensive approaches, so that only medium 

level security may be available. Therefore, as a further protective measure, it is important to 

understand what kind of data it is reasonable to let these devices handle. For instance, if we use 

a BYOD approach, where the user owns the device, we may want to be extra careful about 

letting sensitive data be stored on the device. Tightly controlled devices used for tactical 

purposes may instead be able to handle higher classified data, but only as long as it does not 

require long term protection. How to evaluate which information is critical or harmless, how 

long it is safe to store it, how to handle it, and so forth, is a case-by-case evaluation and depends 

on the specific scenario. Nevertheless, we argue that there are some types of data and activities 

that are particularly suited to be handled by mobile devices, without necessarily requiring high-

grade security. There may be also other practical obstacles to the deployment of a solution based 

on commercial devices in a military setting, like for instance the difficulty of connecting 

systems with different classification levels. Here, we briefly consider a possible scenario to 

illustrate these issues and suggest some possible solutions. This chapter is based on a previous 

publication [2], but it elaborates the issues further in the context of this report. 

5.1 The Common Operational Picture scenario 

One thing mobile devices can do pretty well, is data collection. As mentioned earlier, they are in 

practice a platform packed with sensors, and the intuitive interfaces let users easily take pictures 

and videos, write messages, or record voice, while services in the background can collect a 

whole other spectrum of information like location, temperature, radio signals and much more. If 

we have a team of soldiers equipped with these devices, the individual observations can be sent 

to some central server that aggregates them into what is commonly referred to as a ―Common 

Operational Picture‖ (COP) together with other information coming from additional source and 

intelligence. The problem is that while the data collected from a single device is not necessarily 

sensitive itself, the COP on the server can quickly become classified as it can potentially expose 

the overall capabilities, positions and movements of the whole unit. So, although we might 

argue that a commercial mobile device can be safely used to report some observations, there are 

other practical problems to consider. Figure 5.1 summarizes the scenario. 
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Figure 5.1    An approved gateway could allow information exchange between different security 
levels. Additionally, mobile devices may be discriminated based on their reliability 
and be given access to different information. 

5.1.1 Initial risk assessment 

First of all, let us give an example of how one may assess the risk of using mobile devices in 

this situation. In this case we consider commercial mobile devices ―secure enough‖ for the task 

because we record observations that consist mostly of information that would be available to 

anyone else in the close vicinity or of public domain, and useful only in the short term. So, 

given that the devices can provide a secure communication channel, an attacker would have to 

gain physical access and ―steal‖ the information right after it was collected in order to have any 

use for it. However, at that point it would be easier to just collect the same information instead 

of stealing it, making the security of the device sufficient to deter an attacker, and the potential 

loss of information acceptable. 

5.1.2 Local aggregation and cryptographic material 

While it can be argued that in most cases a single observation is not particularly sensitive, at 

least in the short term, if the device stores all observations made over a longer period of time, 

this might no longer be the case. For instance, in an aggregated form, the stored observations 

could indirectly reveal patterns and trends about the modus operandi of the user, and this could 

give an advantage to the attacker also in the near future. Since this information requires long-

term protection, the device protection would become insufficient as more time-consuming 

attacks become feasible. In this case the problem could be mitigated simply by requiring that the 

observations were wiped away from the device right after they were reported to the server and 

the reception was acknowledged. A reliable way of doing so, however, could prove to be tricky 

in practice [2]. Similarly, the cryptographic keys used to establish a secure connection to the 

GATEWAY 
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server and possibly authenticate the user, should not be permanently stored on the phone 

because of similar security concerns. A possible mitigation we proposed previously [2] is to 

adopt smart-cards to provide tamper-proof key storage and strong authentication, which 

commercial mobile devices usually lack. We called this approach ephemeral classification to 

emphasize the short-lived nature of the sensitive data handled by the mobile device. 

5.1.3 Reliability 

The reliability of the observations themselves is dependent on the degree of trust we have in the 

device and the user. A compromised device can potentially report falsified or forged data. In a 

heterogeneous environment we could think of assigning different degrees of trust to different 

devices, based on some reliable parameters. Remote attestation could be one, but a simpler one, 

although not as reliable, could be the type of authentication. One could assign a higher degree of 

trust to those devices using stronger authentication. The underlying idea is that we can think that 

someone using a smart-card has also a somewhat more secure and reliable device (and training), 

than someone using, for instance, user-name and password or anonymous access. This could be 

the case in an emergency or disaster scenarios where military and civilians could cooperate to 

gather as much data as possible on the current status of the situation just by downloading an app 

and sending in whatever data they can collect [4, 54], but using different authentication methods 

based on the equipment they have. 

5.1.4 Classified server  

As mentioned at the beginning, the COP will most likely have to be stored on a server approved 

to handle classified information. Thus, if we wish to use commercial devices not approved to 

handle data of at least the same classification level, it may not be possible to connect them 

together to report the observations at all. The problem of connecting systems with different 

classification levels is a very current one, and not limited to the adoption of COTS products. We 

discuss this in detail in [2], but in general there are possibilities to allow a data flow from a 

lower classified system to a higher classified one, so that no data can leak from high to low. 

This however means also that it is very difficult to send any meaningful response to the device 

to confirm the successful reception of an observation, or maybe even a successful 

authentication. A gateway that ensures the separation between the security domains, while 

offering required functionalities like authentication and error handling, is one of the possible 

solutions that are under consideration [55]. Furthermore, there is always the risk that some 

malicious agent could find its way to the classified server through a less secure device and do 

some damages. Although information would not leak from it, its availability or integrity could 

still be compromised. 
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5.1.5 Information sharing  

Even if we could successfully report all the observations to a classified server from a low 

classified device in a secure and reliable way, the resulting aggregated information would still 

be classified. Hence, it would not be possible to share it with the soldiers in the field if they 

were to use the same mobile devices. As it would not make much sense to have an additional 

classified device in the field (which could then be used for everything else instead), a possible 

strategy could be to share only parts of the COP with each device/soldier, based on their current 

position and information need. This could suffice to guarantee that the loss or compromise of 

one or few devices would not compromise the whole team or operation. The level or amount of 

information could also depend on the reliability of the device as described in Section 5.1.3. If 

more thorough declassification is needed, a manual solution may be adopted. In any case, 

additional control mechanisms might have to be in place to avoid that other classified 

information could leak from the server together with the declassified data. 

5.1.6 Off-line 

Although we argued that wiping of sensitive information could be a practical solution to 

minimize the risk of information loss, there may be situations when this approach is not 

possible, or might have to be delayed. Typically, if we do not have connectivity and cannot 

report to the server, we would save the data until we were back on-line. Similarly, if we 

received data from the server, we would like to store them for later use and avoid downloading 

them again, especially in situation with intermittent connectivity. This means that data cannot be 

kept in volatile memory only, and must be written to disk. This poses a significant threat if one 

where to lose the device, therefore strong encryption is the most intuitive solution here. 

However, full-disk encryption offered by most mobile devices may not work well for this 

particular application, and an ad-hoc solution, where keys where generated and stored on the 

smart-card, would be more suitable. 

5.1.7 Civilian-Military cooperation 

In a related scenario where the military may need to coordinate with civilian actors like police, 

fire-fighters or others, commercial mobile phones could be an easy and cheap solution to 

establish a common data and voice channel without the usual interoperability problems between 

proprietary systems. Given that in these situations only sensitive, but not highly classified 

information is shared and that most of it is generated on the fly and it is not retrieved from 

proprietary classified servers, standard security offered by commercial smartphones may suffice 

and we would not have many of the other problems mentioned in the previous sections. 

Dedicated servers managed by some trusted third party could provide the necessary 

infrastructure to swiftly set-up mission-specific profiles, so that anyone who can download the 

app and has a registered identity on the server can take part in the mission even with their 

private, but preferably managed, devices. 
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5.2 Discussion 

In order to assess whether a given mobile device provides adequate security in a given scenario, 

we need to understand what type of information will be generated, consumed and exchanged in 

that situation and what kind of protection it needs. In general, commercial mobile devices can 

provide good short term protection, especially if used in a controlled environment, while in the 

long term they are more likely to be compromised. Therefore, we believe that they may be a 

viable choice in situations where information is not only unclassified, but also classified for a 

short-time or only in aggregated form. An example is data collected or generated by a user that 

is sensitive only in the current situation and is to be used immediately. Device or data loss 

would then not provide any particular advantage to an adversary, as he or she would not have 

time to act on it. Also information that may be classified could be fragmented so to still be 

useful to the individual users, but not particularly critical if lost. Of course, this is valid given 

the assumption that the device is not already compromised so that an attacker has real-time 

access to any information on it, but he/she needs to use a certain amount of time and resources 

to break its security. 

So, even though commercial mobile devices may not provide high security or reliability in all 

situations, there are mitigations that could be put in place to allow their use in many interesting 

situations where they can provide an increased operational effect. Still, many technical 

challenges may arise in their actual integration and deployment in a real military setting, and 

possible solutions should be investigated. 

6 Conclusions 

Manufacturers and platform providers are increasingly interested in making mobile devices 

secure, because mobile devices are being used for security critical tasks like payments, remote 

management of houses and cars, and as identity tokens, and because corporate customers want 

secure and manageable devices to solve the BYOD problem. In addition, in order to appeal also 

to governmental and military actors, many mobile platforms seek also to be certified for 

standards like FIPS and Common Criteria, as shown by the NSA CSfC list
70

. BlackBerry 10
71

 

and a new phone born from the collaboration between Sectra and Samsung
72

 seem to have even 

been approved for use at RESTRICTED level, proving that commercial smartphones can in fact 

be made quite secure. This appears to be in contrast with the continuous stream of news about 

the increasing amount of newly discovered vulnerabilities and malicious applications in mobile 

devices. However, in this report we have seen how the presence of a vulnerability does not 

                                                           
70 https://www.nsa.gov/ia/programs/csfc_program/component_list.shtml 
71 http://press.blackberry.com/press/2013/blackberry-10-receives-nato-approval-for-restricted-communicatio.html 
72 http://communications.sectra.com/security-solutions/tigers-r 
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directly imply its exploitability, as there are many security mechanisms in place to mitigate or 

prevent potential attacks. An analysis of various mobile security reports further confirms that 

devices that have not been tampered with and with the recommended security settings enabled 

are much less exposed to external threats. Globally, only around 0.1% of such Android devices 

have been found to have some kind of potential harmful application on them. The few iOS 

infections found on non-jailbroken devices can also be partly blamed on users ignoring security 

warnings. 

This does not mean that commercial mobile devices should be trusted with handling high-grade 

military information out-of the-box. The risk for a new vulnerability being discovered and 

exploited despite the existing security is always present, and users can intentionally or by 

mistake compromise the security of the device. Management tools can help achieving better 

control, but at the cost of the user’s freedom. These tools are also not more secure than the 

platform on which they run, so they are rather a way to ease security management and increase 

the chance that policies are properly defined and enforced. The common vulnerabilities and 

attack vectors we have uncovered in this report are also taken from a consumer market setting, 

and while most of them could be avoided by stricter security policies, it is not clear what kind of 

new targeted attacks could emerge in a different setting like a military one and whether the same 

mitigations would be just as effective. This is however a problem that is common to any 

commercial product, not just mobile devices. 

Still, by carefully analyzing the type of information one can expect to generate, receive and 

consume on these devices, it is possible to design ―ad-hoc‖ solutions that can reduce the risk of 

sensitive information loss to an acceptable level. Thus, commercial devices can indeed be 

securely used in some scenarios where the benefits brought by their greater flexibility, ease of 

use and lower cost, overweigh the potential security risks. Example may be emergency or crisis 

situations where civil-military cooperation is needed; simple reporting of individual 

observations or non-security critical messages; local communication and information 

distribution in a closed network; and so on. 

On the other hand, if such devices are to be used in mission critical and rough environments, 

where neither mobile nor Wi-Fi connectivity is available, with opponents that have advanced 

cyber-attack or electronic warfare capabilities and where reliability and confidentiality are 

critical, dedicated solutions would have to be adopted. In Chapter 4.2.3 we discussed this 

approach concluding that although we should talk of military devices built on commercial 

technology rather COTS products, using commercial technology as a foundation still gives 

considerable advantages. Supply-chain attacks, physical access and low reliability should 

however still be taken into account when evaluating the actual risk of using these devices. 

Concluding, modern mobile devices can realistically be used in some situations where dedicated 

military equipment is not a desirable alternative because of the high costs, specialized expertise 

or clearance required, or interoperability issues. In these cases, having readily available and easy 

to use equipment that allows communicating and sharing information in a somewhat controlled 

way, is preferable to not having any means of communication at all or let users find even more 

insecure ways of exchanging information. Many projects are already looking at mobile apps as 
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the new way to bring innovative services to soldiers, and this trend is likely to grow. Thus, we 

should rather focus on how to support this development by adapting our security mindset to the 

new technology, rather than excluding the technology because it does not fit in our current 

security practices. 
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Appendix 

A Secure mechanisms 

Android (5.0-6.0) iOS (9+) BlackBerry 10 Windows 10 

INTEGRITY PROTECTION AT BOOT TIME 

Android supports verified 

boot through the optional 

device-mapper-verity 

(dm-verity) kernel 

feature
73

. The device 

block integrity check is 

performed by the kernel 

comparing the calculated 

hash of each block to the 

stored reference hash 

tree. However, the device 

must implement a trusted 

boot that verifies the 

integrity of the kernel 

first [56]. Therefore it 

should be supported by a 

RSA key burned in the 

device. 

From [18]: ―Each step 

of the startup process 

contains components 

that are 

cryptographically 

signed by Apple to 

ensure integrity and 

that proceed only after 

verifying the chain of 

trust. This includes the 

bootloaders, kernel, 

kernel extensions, and 

baseband firmware. 

At boot time the 

signatures of all 

loaded components, 

included the boot 

loader and the OS, 

are verified with a 

public certificate 

installed in the 

processor [21]. 

Windows phone 

must comply with 

UEFI specifications 

and implement a 

trusted boot, that 

includes a firmware 

TPM running in 

TrustZone [22]. Most 

likely as specified in 

[57]. 

SANDBOXING AND ISOLATION 

Android uses a Unix-

style user separation of 

processes and file 

permissions, where 

each application is 

given a unique UID 

and runs in a separate 

process. s. All of the 

software above the 

From [19]:‖… each 

application is 

contained within its 

own unique directory 

on the filesystem and 

separation is 

maintained by the 

XNU Sandbox kernel 

extension… for an 

―App sandboxing is 

primarily enforced 

through a combination 

of user and group 

filesystem 

permissions, separate 

operating system users 

and associated groups 

for each app, and PF 

Apps are installed in a 

―Least Privilege 

Chamber‖ (LPC) 

allowing them to use 

only the capabilities 

defined in the 

―manifest‖ the app 

comes with. New 

privileges can be 

                                                           
73 https://source.android.com/security/verifiedboot/index.html 
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kernel (see Figure xx), 

including operating 

system libraries, 

application 

framework, 

application runtime, 

and all applications 

run within the 

Application 

Sandbox
74

.  

application to access 

things like media, the 

microphone, and the 

address book, it must 

request the relevant 

permissions from the 

user.‖ 

firewall rules‖ [19]. 

Each app has a unique 

group ID, and its 

sandbox is defined by 

both this ID and the 

specific location in 

which it runs (work or 

personal space). 

granted only by 

updating the app [22].  

SECURE APPLICATION PROVISIONING 

Android developers 

must register in order 

to be able to publish 

on the Google Play 

store, but no identity 

check is performed 

besides the credit card 

payment. Apps can be 

signed with self-signed 

certificates, but need 

to go through the 

Google Bouncer 

system where they are 

automatically checked 

for malware. However, 

apps from third party 

app-stores can be 

installed on the 

devices given the user 

consent. In this case, 

no security evaluation 

is guaranteed.  

Signatures are used to 

make sure that only 

apps signed with the 

same certificate can 

Apple requires 

developers to register 

to their iOS Developer 

Program in order to 

issue a certificate that 

will be used to sign 

their apps. Developers 

are to be identified 

personally. Apps are 

reviewed by Apple to 

ensure they operate as 

described and don’t 

contain obvious bugs 

or other problems. 

Companies can obtain 

special certificates to 

create in-house apps 

that can be installed 

through an MDM, 

bypassing the appstore 

[18].  

Apps not signed by 

Apple can be installed 

only on jailbroken 

devices. 

Applications for 

BlackBerry 10 are 

solely distributed via 

BlackBerry World 

[19]. Like for Apple, 

BlackBerry developers 

must enroll and get a 

certificate with which 

they sign their apps.  

BlackBerry states that 

apps submitted to be 

published in their 

appstore will be 

―aggressively 

scrutinized‖ and give 

some requisites they 

should satisfy
75

. 

Keys, however, are 

stored by BlackBerry, 

so that it actually has a 

copy of the 

developers’ keys
76

. 

Microsoft requires a 

developer account in 

order to submit apps 

for revision before 

publications. From 

their guidelines
77

, it 

appears that apps are 

signed directly by 

Microsoft before being 

published on the app 

store. 

                                                           
74 https://source.android.com/security/overview/kernel-security.html#the-application-sandbox 
75 https://developer.blackberry.com/builtforblackberry/documentation/criteria/security.html 
76 http://devblog.blackberry.com/2013/08/code-signing-keys-be-gone-welcome-blackberry-id/ 
77 https://msdn.microsoft.com/library/windows/apps/mt148554.aspx 



  

    

 

 60 FFI-RAPPORT 16/00319 

 

communicate and be 

updated.  

System applications 

are signed with 

platform keys and are 

allowed to run with 

system privileges and 

share resources [56].  

Signatures are also 

checked every time an 

app or some code is 

run [19]. 

SECURE STORAGE OF SENSITIVE DATA 

Android offers full 

disk encryption by 

default from Android 

5.0. It creates a 128-bit 

AES master 

encryption key the 

first time the device is 

booted, which is in 

turn encrypted with 

the user password or 

Pin and possibly 

signed by a private 

key. The resulting 

encryption key is then 

used by dm-crypt to 

encrypt everything that 

is written to disk.  

The key is protected in 

hardware by the TEE 

where this is 

available
78

. 

All iOS devices 

contain two unique 

AES keys stored in the 

dedicated 

cryptographic 

coprocessor (The 

Secure Enclave), 

which are used to 

generate other 

encryption keys, like 

the File System Key, 

created the first time 

the device is booted, 

which is used to 

decrypt the partition 

table and the system 

partition at boot time. 

In addition a ―per-file‖ 

key is created through 

the Data Protection 

API from the user 

passcode and used to 

encrypt new files as 

they are written to disk 

[18] [19].  

Blackberry encrypts 

both work, personal 

and media storage data 

with a key hierarchy 

rooted in a device-key 

embedded in the 

processor when the 

processor is 

manufactured. For 

each file a random 

AES-256 key is 

generated, which is 

encrypted with the 

domain key, in turn 

encrypted with the 

work or personal 

master key, which is 

stored in NVRAM and 

encrypted with the 

system master key 

stored in the replay 

protected memory 

block on the device, 

which is encrypted 

with the device-key 

[20]. 

Windows uses 

BitLocker to provide 

full-disk encryption, 

backed-up by a 

firmware TPM 

implemented in 

TrustZone. Keys are 

stored in the device 

eFuses
79

. Company 

data are additionally 

encrypted using 

Enterprise Data 

Protection (EDP) [22]. 

 

                                                           
78 https://source.android.com/security/encryption/index.html 
79 https://businessmobilitycenter.microsoft.com/en/webinars/Pages/Webinar-Security-for-Lumia-with-Windows-Phone-8.aspx 
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CENTRALIZED AND FREQUENT SECURITY UPDATES 

Google maintains the 

Android code base and 

releases security 

updates, but each 

device manufacturer 

running a customized 

Android must release 

their own versions. 

Google promised 

however to increase 

the frequency of the 

updates to once a 

month
80

, but device 

manufacturer and 

network operators will 

have to follow up.  

Apple has full control 

on both device 

firmware and 

software, so they can 

push any update on all 

Apple devices 

whenever needed and 

centrally. They can 

also prevent 

downgrades that can 

be used to exploit old 

vulnerabilities by 

using a ―System 

Authorization 

Software‖ [18]. 

BlackBerry has also 

control over all 

manufacturing process 

from hardware to 

applications and can 

centrally update all its 

devices. 

Although originally 

shipped only on 

Nokia’s phones, 

Windows mobile 

opened to different 

OEM manufacturers 

last year
81

, potentially 

creating the same 

fragmentation problem 

Android has. 

However, with 

Windows 10 mobile, 

they intend to 

centralize the 

distribution of security 

updates despite 

different manufacturer 

and carriers
82

. 

BYOD AND MDM 

Android support for 

MDM software has 

been usually limited to 

enforcing password 

policy, device wipe 

and encryption until 

the introduction of 

Android for Work 

with the Lollipop 

edition. Now a device 

can be partitioned into 

a personal and work 

space, where the work 

space owner has a 

much wider range of 

security policies they 

can create [15].  

Apple gives also the 

possibility to configure 

a device for different 

scenarios like User-

owned, Organization 

owned personally 

enabled, and 

Organization owned 

non-personalized. It 

offers wide support to 

MDM software and 

integration with Apple 

services [58]. 

BlackBerry Balance is 

the BlackBerry BYOD 

solution. It allows 

partitioning the device 

in a personal and work 

space, each encrypted 

with its own key. 

Again, the device can 

be configured for three 

different situations: 

Work and personal – 

Corporate (BYOD), 

Work and personal – 

Regulated, Work 

space only. [21] 

Windows 10 offers 

also separation 

between personal and 

work data and apps 

with separate 

encryption and 

dedicated app stores 

for each. MDM 

support is also quite 

extensive and allow 

for wide range of 

policy options [22]. 

 

 

                                                           
80 http://officialandroid.blogspot.no/2015/08/an-update-to-nexus-devices.html 
81 http://www.engadget.com/2014/02/23/microsoft-lg-lenovo-windows-phone/?ncid=rss_truncated&utm_campaign=sf 
82 http://www.cnet.com/news/microsoft-to-control-software-updates-for-windows-10-mobile/ 
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B Abbreviations 

AOSP Android Open Source Project 
NFC 

Near Field Communication 

API A Platform Interface 
NS 

Non-Secure 

BYOD Bring Your Own Device 
NSA 

National Security Agency 

C2IS 
Command and Control Information 
System 

NX 
Non eXecutable 

CIO Chief Information Officers 
OEM 

Original Equipment Manufacturer 

COP Common Operational Picture 
OS 

Operating System 

COTS Commercial off the Shelf 
OWASP Open Web Application Security 

Project 

CSfC Commercial Solutions for Classified 
PHA 

Potential Harmful Application 

CTS Compatibility Test Suite 
PKI 

Public Key Infrastructure 

CVE 
Common Vulnerabilities and 
Exposures 

PLE 
Payload Encryption 

CVSS 
Common Vulnerability Scoring 
System 

RTOS 
Real-time Operating System 

DAC Discrete Access Control 
SELinux  

Security Enhanced Linux 

DISA 
Defence Information System 
Agency 

SIM 
Subscriber Identity Module 

DMCC-
S 

Defense Mobile Classified 
Capability-Secret 

SIPRNet Secret Internet Protocol Router 
Network 

DRM Digital Rights Management 
SMS 

Short Message Service 

EAL Evaluation Assurance Level 
SoC 

System on Chip 

EMM Enterprise Mobile Management  
SQL 

Structured Query Language 

FIPS 
Federal Information Processing 
Standards 

SSL 
Secure Socket Layer 
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HTTPS 
Hyper Text Transfer Protocol 
Secure 

TEE 
Trusted Execution Environment 

IPC Inter-process Communication 
TLS 

Transport Layer Security 

IT Information Technology 
TPM 

Trusted Platform Module 

LTE Long Term Evolution 
UEFI Unified Extensible Firmware 

Interface 

MAC Mandatory Access Control 
USB 

Universal Serial Bus 

MAM Mobile Application Management 
VOIP 

Voice Over IP 

MDM Mobile Device Management 
VPN 

Virtual Private Network 

MIM Mobile Information Management 
XML 

eXtensible Markup Language 

MMS Multimedia Messaging Service 
XN 

eXecutable Never 

NDA Non-Disclosure Agreement   
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