
Modern mobile platforms from a security
perspective

-
Federico Mancini

16/00319FFI-RAPPORT

FFI-RAPPORT 16/00319 1

Modern mobile platforms from a security

perspective

Federico Mancini

Norwegian Defence Research Establishment (FFI) May 02 2016

 2 FFI-RAPPORT 16/00319

Keywords
Mobiltelefon

Datasikkerhet

Android

Risikovurdering

Informasjonssikkerhet

FFI-rapport:

FFI-RAPPORT 16/00319

Prosjektnummer

1294

ISBN

P: 978-82-464-2752-2

E: 978-82-464-2753-9

Approved by

Nils A. Nordbotten, Research Manager

Anders Eggen, Director

 3 FFI-RAPPORT 16/00319

Summary

Commercial mobile technology has transformed the way we produce and consume information.

Smart devices like phones, tablets, watches and even TVs, are all the time inter-connected

through networks. These devices are packed with sensors and apps that allow us to easily

collect and share instantly all types of data. Not surprisingly, many have realized that this

technology could bring important innovations also in a military setting, and various projects have

been started to explore the potential applications. Being able to report, aggregate, share and

visualize important information in real-time just by downloading an app, is undoubtedly an

attractive idea. Furthermore, the current interest in adopting LTE for military communications

would make the case for using smartphones even more pressing.

Security is often presented as a main obstacle because commercial products cannot meet strict

military security requirements without some additional hardening. Defining how this should be

done is not trivial, especially if the same product is to be used in a variety of situations. The

result is either that security is left as an after-thought yielding insecure products, or that

commercial technology is advised against to be on the safe side. The reality is that smart

devices do offer a wide range of security mechanisms, but the protection they can provide

depends heavily the way they are used. That is why one should rather assess whether the

operative effect gained by using them outweighs the potential risks on a case-by-case basis,

and develop solutions that are secure enough for the specific situation. This kind of risk analysis

should be based on a clear understanding of which assets (information) are to be protected and

for how long, and the consequences of failing to do so. Once this is established, it is possible to

determine whether the security mechanisms available can provide adequate protection or not,

possibly by employing additional mitigation strategies.

With this report we want to place commercial smart mobile technology in a clearer security

perspective and understand which threats they are best suited to protect against. First we give

an extensive overview of the security models of the most popular mobile platforms on the

market, namely Android, iOS, Windows and BlackBerry, and the security mechanisms they

implement. We then review publicly available reports, statistics and documentation that show

how effective these mechanisms are in a consumer market setting. Despite alarming reports of

newly discovered vulnerabilities and malicious applications, it is in fact only a very small

percentage of active devices that are affected. In many cases, the users are to blame because

they intentionally deactivated or bypassed the security features that could otherwise protect

them. Naturally, there are some threats that these mobile devices still cannot mitigate, but

significant security is in place and is improving continuously. Efforts to create dedicated devices

with military grade security based on commercial mobile platforms are also ongoing, showing

that commercial grade security can provide acceptable protection also in a military environment

thanks to the stricter control on both equipment and users. Dedicated management tools,

careful data management and additional security technology like smartcards could further

reduce the risk of compromise and thus expand the range of scenarios where this technology

can be adopted and make a substantial difference.

FFI-RAPPORT 16/00319 4

Sammendrag

Kommersiell mobilteknologi har endret måten vi produserer og bruker informasjon på. Smarte

enheter som telefoner, nettbrett, klokker og til og med TV er hele tiden sammenkoblet gjennom

mobil- eller internett. Enhetene er fullpakket med sensorer og apper som lett lar oss samle og

dele alle mulige typer data i sanntid med hvem vi måtte ønske. Ikke overraskende er det flere

som mener at denne teknologien også kan ha spennende militære anvendelser, og det er

allerede i gang mange prosjekter som utforsker forskjellige muligheter. Å kunne rapportere,

sammenstille, dele og visualisere viktig informasjon i sanntid bare ved å laste ned en app, er

utvilsomt en attraktiv idé. Til og med LTE, den kommunikasjonsstandarden som i dag brukes av

de fleste smarttelefonene, er under vurdering for mulig militær bruk.

Sikkerheten er imidlertid ofte sett på som en potensiell hindring. Problemet er at militære

sikkerhetskrav er så strenge at kommersielle produkter ikke alltid kan møte dem uten noe ekstra

tilpasning. Dette kan være vanskelig å få til i praksis, spesielt hvis samme produkt skal være

sikkert uansett situasjon. Konsekvensen er enten at sikkerhetsutfordringer bevisst ignoreres i

håp om at de vil kunne løses i etterkant, eller at all bruk av kommersielle produkter frarådes for

å være på den sikre siden. Realiteten er at smarte enheter tilbyr et bredt spekter av

sikkerhetsmekanismer, men beskyttelsen de kan gi er svært avhengig av måten de brukes på.

Man bør derfor vurdere om den operative effekten som oppnås i et konkret scenario er større

enn den potensielle risikoen, og utvikle tilpassede løsninger som er sikre nok for den

situasjonen. Denne typen risikoanalyse bør være basert på en klar forståelse av hvilken

informasjon som skal beskyttes, hvor lenge den skal beskyttes og konsekvensene av

kompromittering. Når dette er klargjort, vil det være mulig å finne ut om de tilgjengelige

sikkerhetsmekanismene kan gi tilstrekkelig beskyttelse eller ikke, muligens ved å igangsette

flere risikoreduserende tiltak.

Denne rapporten setter kommersiell mobilteknologi inn i et sikkerhetsperspektiv, og gjør det

lettere å vurdere i hvilke situasjoner slik teknologi kan brukes. Først gir vi en omfattende

oversikt over sikkerhetsmodellene til de mest populære mobile plattformene på markedet,

nemlig Android, iOS, Windows og BlackBerry, og en oversikt over truslene de er tenkt å

beskytte mot. Deretter gjennomgår vi offentlig tilgjengelige rapporter, statistikker og

dokumentasjon som viser hvor effektive disse mekanismene er i et forbrukermarkedsperspektiv.

Til tross for alarmerende rapporter om nylig oppdagede sårbarheter og ondsinnede apper, viser

det seg imidlertid at det er en svært liten prosentandel av aktive enheter som faktisk er berørt. I

mange tilfeller er det brukernes egen skyld fordi de bevisst deaktiverer eller omgår

sikkerhetsfunksjonene som ellers kunne ha beskyttet dem. Naturligvis er det noen trusler som

disse mobile enheter fortsatt ikke kan håndtere, men mye av sikkerheten er allerede på plass og

blir stadig bedre. Forsknings- og industrimiljøer jobber også intenst med å utvikle enheter for

militære formål basert på kommersiell teknologi. Administrasjonsverktøy, tilpasset

datahåndtering og annen sikker teknologi som smartkort kan redusere risikoen for

kompromittering ytterligere. Dermed kan denne teknologien tas i bruk i et større utvalg av

scenarioer og gjøre en betydelig forskjell.

FFI-RAPPORT 16/00319 5

 Content

1 Introduction 7

1.1 Context 8

1.2 Methodology 9

1.3 Scope 9

1.4 Report overview 10

2 Mobile security 10

2.1 Modern mobile platform security 11

2.2 Mobile platforms security models and features 18

2.2.1 ARM security 18

2.2.2 Android security 20

2.2.3 iOS security 23

2.2.4 Blackberry 10 security 25

2.2.5 Windows 10 Mobile security 27

2.3 Discussion 28

3 Security in practice 30

3.1 Threats, vulnerabilities and related concepts 31

3.2 Overview of security reports and statistics 34

3.2.1 Cross-platform vulnerabilities 35

3.2.2 Android 35

3.2.3 iOS 38

3.2.4 BlackBerry 10 and Windows 10 Mobile 39

3.3 Discussion 39

4 Possible approaches to enhance security 41

4.1 Ownership models supported by COTS device 42

4.1.1 User ownership 42

4.1.2 BYOD: shared ownership 42

4.1.3 Enterprise ownership 43

4.1.4 Management solutions 43

4.2 Dedicated solutions 44

4.2.1 Commercial (based) products 44

 6 FFI-RAPPORT 16/00319

4.2.2 Dedicated proprietary solutions 46

4.2.3 Military research projects 46

4.3 Discussion 47

5 Risk mitigations and challenges – scenario analysis 51

5.1 The Common Operational Picture scenario 51

5.1.1 Initial risk assessment 52

5.1.2 Local aggregation and cryptographic material 52

5.1.3 Reliability 53

5.1.4 Classified server 53

5.1.5 Information sharing 54

5.1.6 Off-line 54

5.1.7 Civilian-Military cooperation 54

5.2 Discussion 55

6 Conclusions 55

Appendix 58

References 63

FFI-RAPPORT 16/00319 7

1 Introduction

The reason why commercial off the shelf (COTS) products have long been proposed as an

alternative or complementation to especially developed military products is mostly because of

the potential cost reduction, the quick adoption of new technology and the readily available

products [1]. The main drawbacks are usually their inability to comply with the high military

requirements for security and robustness and their lack of compatibility with military standards.

In addition, commercial products are usually not made to last particularly long and especially IT

products are continuously patched and updated during their life time. This can lead to problems

like obsolescence, which is the lack of replacement parts or updates that renders relatively new

products quickly obsolete so that they must be replaced or disposed of. A famous case is the

super-cluster the US Air Force built out of PlayStations 3, but where a firmware update made it

impossible to replace broken units with new PlayStations as it was now impossible to install

Linux on them
1
.

Commercial ―smart‖ technology, and especially its mobile incarnations such as smartphones,

tablets or even smartwatches, is making the case for adopting COTS products as current as ever.

These devices changed the way we produce and consume information. They are with us all the

time, are interconnected and packed with sensors that can continuously collect data about our

environment, our movements or our preferences and present us with personalized information

based on what we might need in that particular situation. Thanks to intuitive interfaces and apps

for any thinkable purpose, we can also easily generate and share information instantly with

whomever we like. Not surprisingly, many have already realized that this technology can have

many innovative applications also in a military setting, despite the possible pitfalls mentioned

above. Related activities are already exploring the use of apps for improving reporting [2],

situational awareness [3], information sharing in crisis situations [4] and command and control

information systems (C2IS) [5]. The proposal of using the Long Term Evolution (LTE) standard

for the Norwegian Defence [6] also strengthens the case for adopting commercial smartphones

that natively support it.

However, simply integrating commercial mobile devices into a military information system is

no trivial task, and security is one of the main reasons. On one hand, there are many that are

enthusiastic about what can be achieved with this technology and that focus on developing new

apps, frameworks and interfaces tailored for military use, but intentionally leave security as an

after-thought. This often results in insecure products that cannot be deployed unless they are

completely redesigned from scratch with security in mind. On the other hand, we have military

systems that can protect classified information mostly because they are kept isolated from other

potentially harmful systems by an air-gap approach. This means that they are not designed to

handle secure information exchange with other systems which cannot guarantee the same level

of assurance or control, even though the information itself is not highly classified. Thus,

commercial smartphones and tablets are often not considered secure enough to access these

1 http://arstechnica.com/gaming/2010/05/how-removing-ps3-linux-hurts-the-air-force/

 8 FFI-RAPPORT 16/00319

military systems even to retrieve or report unclassified information, because of the lack of

secure information exchange solutions across different security domains.

However, the aim of this report is not to solve the above mentioned problems, but rather to

place modern mobile platforms in a clearer security perspective, so that those who may be

interested in adopting them for tasks or projects where security is critical, can get a better

understanding of what protection they can expect, what solutions are available and what

challenges they may encounter in actual deployment. Increased awareness around what these

devices can realistically offer in terms of security can then help to identify the situations where

they can provide an adequate level of protection and to design solutions that are usable in

practice.

1.1 Context

The common claim that a commercial mobile device is generally ―not secure enough‖ is

misleading. There will always be some risks associated with the adoption of any technology and

it is important to correctly understand what these risks are and assess whether they are

acceptable
2
 on a case-by-case basis. The concept that the protection required for some given

information is not static, but can change with time and circumstances, should also be central in

this assessment process. The current military approach to information security, however, is not

flexible enough to account for this kind of dynamism.

The first problem is that when information is to be exchanged between systems, the security

requirements are to a large extent based on the classification of the systems rather than that of

the information. So, unclassified information may not be accessed by an unclassified device if it

is stored on a classified server for fear that other classified information may leak out. In a

similar way, an unclassified device may often not even send information to a classified server in

the chance that malicious code could sneak in and compromise it. This effectively reduces the

effect of adopting commercial devices even in situations where no sensitive information is

involved, but where they have to operate within a military infrastructure.

The other problem is that information is classified statically, often based on long-term

confidentiality requirements, and in order to make it available to lower classified systems or

users with lower clearance, it must be manually declassified. This is a time-consuming process

and does not account for many possible situations where other requirements like integrity and

availability may weigh more than confidentiality, or where confidentiality protection does not

need to be long-lasting. For instance, smartphones may not be trusted to protect classified

information due to their mobile nature that makes them particularly vulnerable to physical

attacks, but if the information could be considered classified only for a short period of time for

which we can guarantee reasonable protection, then the risk of using smartphones could be

acceptable given some additional mitigations. In other situations, one may decide that

2 «Acceptable risk» is defined as : «A risk that is understood and tolerated by a system's user, operator, owner, or accreditor, usually

because the cost or difficulty of implementing an effective countermeasure for the associated vulnerability exceeds the expectation

of loss‖ in RFC4949.

FFI-RAPPORT 16/00319 9

confidentiality is not so important as long as we can trust the information provenance (trusted

sources), so that integrity requirements should be used to assess whether a specific device can

be used, rather than its capability to keep information secret. Similarly, connectivity and

interoperability requirements could be prioritized over confidentiality in scenarios where

cooperation is the key to success rather than secrecy.

So, it might indeed be difficult to define commercial mobile devices as ―secure‖ in the current

context. However, the definition of a more flexible security concept based on a dynamic risk

assessment rather than static security classifications has already been envisioned in the context

of a Network Based Defence [7], so that even commercial devices may effectively be

considered secure enough for some situations. Activities that deal with the specific problems

mentioned above are also ongoing [8]. Thus, what can be considered secure will most likely

also change, and this report wants to provide the starting point to evaluate commercial mobile

devices in this new context.

1.2 Methodology

This report surveys a selection of commercial mobile technologies based on available open

sources. The goal is to present an organized overview of the security mechanisms they

implement, a discussion of what they are meant to protect and how well they work on a large

scale in the consumer market. We estimate their general effectiveness by reviewing publicly

available security reports. These are mostly compiled by antivirus companies and other third

parties that collect and analyze data about the known vulnerabilities and infections present on

the devices that run their clients. Based on this analysis we can gain an idea of what constitutes

a threat for these devices and why security may have failed to defend against it. We then use

this information to evaluate additional solutions specifically developed to enhance mobile

platform security, both for commercial and military purposes. Finally we put everything

together by describing a possible scenario and discuss practical challenges one may encounter

and possible mitigations when deploying a mobile solution in a military setting.

1.3 Scope

There are various limitations that should be considered when reading this report. First of all, we

consider mainly platform security and only touch upon application and infrastructure security.

Application security is very important, but it would require a separate report and is something

over which we have much greater control than platform security. The infrastructure is also

essential to a complete secure solution, but it is being looked at in other upcoming reports.

Secondly, the overview of security mechanisms we present here is not exhaustive. We selected

the four most popular commercial mobile platforms, which together have a market share of over

99%, and described only the most relevant of their security mechanisms in order to give an idea

of what kind of security is offered in general. We do not have as a goal to write a detailed

technical reference. Besides, many implementation details are not made public, so there may be

additional mechanisms that are not documented at all, or that are implemented in different ways

 10 FFI-RAPPORT 16/00319

on different devices. The imbalance in the publicly available information for the different

platforms we consider is also reflected in the level of detail in this report. Open platforms are

naturally discussed more thoroughly than closed ones.

The estimate of the infection rates of active devices, and therefore of their ability to defend

against various threats is also based on known attacks and vulnerabilities and their detection is

dependent on information reported by the device itself. Devices that for instance are kept off-

line, those that do not share information with antivirus companies or similar third parties, or

victims of new unknown attacks, are therefore not included in these estimates.

Thus, the report should be used as an indication of what security can be achieved with

commercial mobile phones given certain assumptions, but whether a given solution and device

model is indeed secure enough for a specific purpose must be evaluated separately through

some dedicated testing or certification process, and by requesting more detailed documentation

from the manufacturer.

1.4 Report overview

The next chapter explores in detail the security models and mechanisms adopted by the most

popular commercial mobile platforms, namely Android, iOS, Windows and Blackberry, in order

to understand what kind of security they offer and for what purpose. Chapter 3 analyses how

effective these mechanisms are in practice in a commercial setting based on public security

reports and statistics. What emerges is that the number of actual compromised devices is

surprisingly small in percentage, in contrast to the widespread opinion that mobile devices are

relatively insecure and easy to compromise. In Chapter 4 we compare different Bring Your Own

Device (BYOD) approaches and other products and projects aiming at improving mobile device

security for classified and tactical use. Chapter 5 presents a possible scenario where commercial

mobile devices are to be used and integrated within a military infrastructure and analyzes some

of the practical challenges users and staff might meet. Possible mitigations are then discussed

based on our previous work on the subject [2]. Finally, in Chapter 6 we give some conclusions.

2 Mobile security

Modern mobile devices like smartphones and tablet are used for more and more security-

sensitive tasks like: mobile payments; secure authentication; remote control of house alarms,

cars, and even drones; enjoying premium services and paid content; storing privacy-sensitive

information; accessing company networks; and so on. This means that there are many actors

that need to trust these devices with protecting their assets, and if mobile platform providers and

device manufacturers want to appeal to a wide audience and gain market share, they need to

FFI-RAPPORT 16/00319 11

provide sufficient and convincing security on which to build all these services. Lack of adequate

security has long been a problem, but it seems that recently much more focus has been

dedicated to this issue and systems have been redesigned to fill the existing gap, so that even

mid-range devices can provide sufficient protection for most daily tasks. In this chapter we give

first an introduction to the most common security mechanisms found today in commercial

mobile devices, and explain what they are intended to protect and at which level of the platform

they operate. Afterwards, we present in more detail the security models of the most widespread

mobile platforms on the market, namely Android, iOS, BlackBerry and Windows, which

together account for more than 99% of the device platforms present on the global market as

shown in Figure 2.1.

Figure 2.1 Data about global mobile platform market share from IDC3.

2.1 Modern mobile platform security

In order to understand the security of a mobile platform, we need first to describe the

components of such platform, the actors involved and the assets they intend to protect. A

generic mobile device architecture is shown in Figure 2.2.

A mobile device consists of some basic hardware not too unlike that of a laptop. We have a

processor, the volatile memory or RAM, permanent storage, a display, a microphone, speakers,

some peripherals and a battery. Unlike other computing devices we find also various other

sensors like GPS, accelerometer, temperature and light sensors and others. In the case of

smartphones we also find a radio processor, or baseband, to handle the connection to a mobile

3 http://www.idc.com/prodserv/smartphone-os-market-share.jsp

 12 FFI-RAPPORT 16/00319

network. Finally, rather than a BIOS (Basic Input-Output System) we have one or more boot-

loaders that boot the software on the device. Assembling or even producing all these

components is responsibility of a manufacturer.

BOOTLOADER(S)HARDWARE RAM

OS

KERNEL

SYSTEM
APIs

DRIVERS

SYSTEM
SERVICES

INTER PROCESS
COMMUNICATION

STORAGE

APPLICATION
FRAMEWORK

MANIFACTURER

PLATFORM
PROVIDER

ADMINISTRATORS

BUNDLE
APPS

APP STORE

NETWORK
SERVICES

ADMINISTRATION
SOFTWARE

SECURITY

POLICIES

BASEBAND
PROCESSOR

NETWORK
OPERATOR

SYSTEM
PLATFORM

APPLICATION
LAYER

APP
VERIFICATION/

SIGNING/
DISTRIBUTION

APP

APP
DATA

USER
DATA

USERS

APP

3RD PARTY
LIBRARY

DEVELOPERS

PLATFORM PROVIDER/
MARKET PROVIDER/

NETWORK OPERATOR

Figure 2.2 A generic mobile architecture where we roughly illustrate which components are
 under the control of which actors. We distinguish also between the system platform that

 includes hardware and operating system, and the application layer which includes the apps

 running on top of it and that usually are installed afterwards by users or administrators.

On top of the hardware we have an operating system (OS). Its main component is a kernel that

takes care of the most critical functionalities like process scheduling, interface with the

hardware, resource handling, and low level communication. At a higher level it provides

interfaces to the application layer to communicate with the hardware and access various services

and system libraries. This component is provided by the platform provider. Applications that

run on top of the OS can be pre-installed or developed independently by third-party developers
and made available for download by distributing them through app-stores. App-stores are run

by market providers who can enforce various policies about what kind of application their app-

store accepts and who can publish applications there. If the market provider coincides with the

platform providers, tighter control on what can be installed on a specific platform can be

enforced. However, it is usually the user who can decide what to install and what not, unless the

device does not belong to the user. In this case an administrator can enforce a specific security

policy about how the device should be used. Finally, in smartphone, the mobile operator

FFI-RAPPORT 16/00319 13

controls the secret parameters needed to connect and use the mobile network through a SIM

(Subscriber Identity Module) card, and sometimes it can also operate as device administrator

when it comes to which application can be installed or which networks can be used.

Summarizing, we can identify seven main actors: Users; Manufacturers; Mobile Operators;

Developers; Platform Providers; Marketplace Providers and Administrators. Each of them has

control and responsibility for different parts of the mobile device and the infrastructure around

it, and they have different assets they want to protect from different potential adversaries. Table

2.1, reported from [9], summarizes the relationships among these actors, the assets they wish to

protect and their adversaries.

Actors Incentives
Resources to

protect

Primary

adversary

Additional

adversaries

Users
Preserve privacy,

use device freely
Private user data

Remote

attacker

Attacker with

temporary

physical access

Manufacturers

Business model,

regulatory

services

Device identifiers,

configuration

parameters, platform

version

User
External

attacker

Mobile

operators

Subscriber

contract

enforcement

Usage of subsidized

devices, mobile

network resources

User
External

attacker

Developers
Mobile service

protection

Application data and

code

Remote

attacker
User

Platform

providers
Business model

Platform

functionality

Malicious/slop

py developer
User

Marketplace

providers

Marketplace

popularity and

reputation

Distributed

applications

Malicious/slop

py developer
User

Administrators
Company

business model

Company

confidential data

Remote

attacker

Attacker with

temporary

physical access

Table 2.1 Summary of actors who have some asset associated to the mobile platform they want
to protect [9].

 14 FFI-RAPPORT 16/00319

Based on this table we can identify some basic security mechanisms that we can expect to find

in a modern mobile platform, which are summarized in Table 2.2.

SECURITY MECHANISMS AT PLATFORM LEVEL

H
A

R
D

W
A

R
E

Secure Boot Hardware-based security SIM card

O
P

E
R

A
T

IN
G

 S
Y

S
T

E
M

 Sandboxing and isolation Data-at-rest protection
Data-in-transit

protection

Exploit mitigations Crypto Authentication

IN
F

R
A

S
T

R
U

C
T

U
R

E

Secure application provisioning Security updates Security management

Table 2.2 Summary of the main security mechanisms expected in a modern mobile platform,
organized per level.

Let us now go through Figure 2.2 based on the protection needs listed in order to understand

how we came to Table 2.2. First of all, we separate the mobile architecture into two parts: the

mobile platform and the application layer. We can then distinguish between platform security

and application security. Platform security concerns all security mechanisms that come with the

device, including the hardware, OS, mobile operator and pre-installed services based on some

existing infrastructure. In other words, what we get when buying an off-the-shelf device.

Application security is the security implemented in each app we install on the device, and builds

mainly upon the platform security. Although application security is also very important, here we

focus mostly on platform security both because it would be too large of a topic to tackle both in

one report, and because platform security is the building stone on which application security

depends on. If the platform is compromised, no security built in the application layer can be

completely trusted. We are going to summarize the typical application security concerns at the

end of this section anyway, but we are first going through the actors in Table 2.1 with focus on

the platform.

FFI-RAPPORT 16/00319 15

Manufacturers want to protect platform identifiers, hardware firmware like boot-loaders and

baseband processor, and other configuration parameters. In other words they want to protect the

platform integrity and make sure that everything is in order every time the system is booted.

The platform provider, or better the operating system, needs to make sure that malicious

developers, users and external attackers, cannot easily subvert the platform and compromise or

steal sensitive user data, cryptographic keys, credentials and copyrighted material, or install

spyware that can record transactions or conversations taking place on the device. This means

that it must provide a series of security mechanisms to prevent for instance: applications from

reading each other memory; users from misusing or redistributing paid services and material;

and malicious code from exploiting potential vulnerabilities and gain system privileges. This

should happen both in a preventive manner, by allowing only trusted applications to be installed

and giving them only the permissions they need, and at run-time by making sure attacks to or

from these apps are either prevented or mitigated. In order to establish trust in the applications

that are downloaded and installed on the device, someone must verify their genuineness before

they are made available to the end-users. Usually it is the marketplace providers that should

verify both the identity of the developers and that the applications are developed after certain

quality and security standards. Users are also critical to security, as they can often take actions

that override or deactivate the mechanisms that are there to protect them. Based on these

security needs, we summarized some security mechanisms in Table 2.2, which we now explain

more in detail:

 Trusted or secure boot: This technology is used to verify the integrity of the system

components at boot time. It builds a transitive chain of trust starting from the first

component run on the platform, which is assumed to be correct, non-bypassable and

immutable. This component is called the root of trust, and in mobile platforms it is

usually implemented in firmware as the first stage boot-loader. This root of trust can

either ―measure‖ or verify the signature of the next component, before letting it run on

the system. If the verification is successful, the next component is run and iterates the

process until the OS image, which is now guaranteed to be the genuine one, is loaded

and takes control of the platform.

 Sandboxing and isolation: Protection of the applications running on top of the operating

systems should be implemented and enforced at platform level. Sandboxing and

isolation should guarantee that each application runs in a protected and isolated

environment, so that the rest of the system can neither compromise or be compromised

by it. Sandboxed applications should not have access to any other resources than the

ones they need, and should not be able to directly access system resources or other apps

memory. In addition, the inter-process communication between apps or processes

should also be carefully designed and under the control of the operating system. Access

control can be used to enforce a sandbox model.

 Mitigation of exploits: The platform should offer mitigation for possible exploitation of

vulnerable apps on the system, so that malicious code loaded in memory cannot be

executed so easily by the malicious app even though it managed to break out of the

 16 FFI-RAPPORT 16/00319

sandbox. Memory pages marked as non-executable and random allocation of code in

memory are examples of these mechanisms.

 Secure application provisioning: anything that can be installed on the platform should

be verified to be free from malicious code and possibly come from a trusted source. In

addition it may be installed only if it conforms to some given security policy. The

process of verification can take place both on the platform itself, but also in other parts

of the infrastructure before an application is even allowed to be made available for

download. Signature-based verification of application binaries is the standard.

 Protection of data at rest: The platform should offer a secure storage mechanism to the

applications running on it, in order to protect their data also at rest. Sensitive data can be

personal data, identity credentials, or cryptographic keys and certificates. Full disk

encryption and locations with restricted access rights are some of the common measures

taken to achieve this.

 Protection of data in transit: Standard and well established cryptographic protocols

should be offered by the platform to protect communication to and from the device.

VPN, TLS and PKI certificate support are some examples.

 Centralized and frequent security updates: As new vulnerabilities in mobile platforms

are continuously discovered, it is essential that an infrastructure is in place to provide

the required security patches as soon as they are available and possibly without the need

of user intervention or further adaptations.

 Support for security management: In order for the platform administrator to create and

enforce the company security policy, the platform must offer an adequate interface to

management software, so that policy enforcement can take place at system level. Native

BYOD solutions are also becoming a standard in modern mobile devices.

 Device lock: some form for local authentication is needed to lock the device to others

than the legitimate user. This can be in the form of a screen-lock, pin, password, smart-

card, facial recognition or geo-fencing, to name a few.

 Crypto libraries: In addition to data protection at rest and in transit, in order for

applications to implement their own layer of security, the platform should provide

functional and certified cryptographic tools, so that encryption, signing, generation of

random numbers and secure connections can be used without having to rely on third

party libraries shipped with the application.

 Mobile network parameters: secret parameters needed to authenticate a subscriber to

the mobile network are securely stored in the SIM card. These smart cards receive

network information directly from the baseband processor, but can also use the

operating system to provide some services to the user or collect user input, through the

FFI-RAPPORT 16/00319 17

(U)SIM Application Toolkit [10]. They can be bound to a specific device by an operator

lock implemented usually in the firmware
4
.

 Other hardware-based security mechanisms: trusted boot, SIM cards and some exploit

mitigation mechanisms are examples of hardware-based security mechanisms. Others

can be cryptographic co-processors, access control to peripherals embedded in the

processor itself rather than the OS, trusted execution environments, eFuses
5
 and so on.

To conclude this section and for completeness, we report the ―The Open Web Application

Security Project (OWASP) Mobile Top 10‖
 6
, which is a list of the most common security risks

in mobile application development. In other words, security aspects developers tend to ignore or

fail to properly implement, but which do not directly depend on platform security:

1. Weak Server Side Controls: This is actually pretty much anything that can go wrong,

but that does not directly take place on the mobile device.

2. Insecure Data Storage: Most applications store sensitive data unencrypted on the

device, or even worse on an external memory card. Even when encrypted, the key may

not be strong enough or protected correctly.

3. Insufficient Transport Layer Protection: The connection to a server is not always

cryptographically protected, and even when it is it may use old algorithms, weak keys

or invalid certificates.

4. Unintended Data Leakage: This is often in the form of aggressive caching or logging of

sensitive information, or clear text metadata sent to websites or third party server.

5. Poor Authorization and Authentication: Local authentication that is based on weak

passwords; storing keys and passwords in clear text on the device; and assuming that

because a user authenticated successfully locally, there is no need to authenticate also

remotely on the server; are all examples of this problem.

6. Broken Cryptography: This includes third party crypto providers whose algorithm

implementations have not been properly tested and certified; weak key management;

custom cryptographic protocols; use of insecure or deprecated algorithms.

7. Client Side Injection: This concerns all possible types of code injections an attacker can

perform when proper input validation is not implemented. For instance SQL injections,

JavaScript injections and XML injections. These attacks are often executed via a web

component.

4 https://www.theiphonewiki.com/wiki/Unlock
5 https://www.samsungknox.com/en/blog/about-rooting-samsung-knox-enabled-devices-and-knox-warranty-void-bit
6 https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks

 18 FFI-RAPPORT 16/00319

8. Security Decisions Via Untrusted Inputs: Somewhat similar to the previous, it refers

mostly to inter process communication and the lack of input validation.

9. Improper Session Handling: This problem refers to the failure of properly invalidating a

session, setting a reasonable time-out, rotating cookies and generating tokens in an

unpredictable manner.

10. Lack of Binary Protections: Refers to the possibility of easily reverse engineering and

modifying application binaries in order to bypass security mechanisms.

We have now enough terminology and background to look at the specific security mechanisms

implemented in the four mobile platforms we chose to analyze.

2.2 Mobile platforms security models and features

Although the term ―platform‖ sometimes indicates only the OS, in this context we use it to

intend both the hardware, the OS, and the infrastructure around it. The reason is that many

platform vendors like Apple and BlackBerry control all aspects of the production chain of a

mobile device, from hardware to apps, in such a way that it makes sense to see all these

components as a whole. Others like Microsoft provide only the OS, but they still rely on some

hardware features that are expected, if not required, to be present on the device on which they

run. Finally, there is Google that provides a reference Android implementation (AOSP), but

leaves carriers and manufacturers free to modify it as they wish in order to run it on their

devices and with their additional software. Still, all the mobile platforms we present in this

report run on a common hardware platform, namely ARM SoCs (System on Chip). Therefore,

we start by briefly presenting the hardware security extensions that are built in ARM chipsets,

so that it will be easier to understand how they are used by the different platform providers.

2.2.1 ARM security

Unlike Intel and AMD, ARM provides only the specifications for their chipsets, which are then

manufactured by different companies like Qualcomm, Texas Instruments, Exynos, Broadcom,

Apple, and others. However, most new ARM processors include some interesting security

extensions, collectively called TrustZone. TrustZone is an implementation of what is known as

a Trusted Execution Environment (TEE). In simple terms, it is a technology that allows

virtualizing a secure processor on top of a normal one, and that integrates access control at

hardware level. By setting a special bit called the NS (Non Secure) bit in the processor, one can

run the same processor core in either a non-secure or a secure mode, or ―world‖, and at the same

time make the memory and peripherals aware of which mode is currently active, so that they

can grant or deny access to some pre-configured secret, devices or memory areas.

FFI-RAPPORT 16/00319 19

Using this technology, one can effectively run two different operating systems on the same

device, where one runs in the ―normal world‖ and does not have any access to the memory and

dedicated devices of the other one, which runs in the so called ―secure world‖. However, there

are different possible architectures that can be built on top of TrustZone, including simple APIs,

secure services, or complete operating systems [11]. Possible secure services one can implement

can be: secure boot, firmware TPM, crypto services, and isolated execution. More details can be

found in a previous report [12]. This technology is not new, as it was first presented in 2004

[13], but it has been actively used to offer better security in mobile devices only in the last

years. Some companies like Gemalto and Giesecke & Devrient developed also their own

TrustZone-based solutions, but eventually joined in a common venture called Trustonic
7
.

Standardization efforts have also been ongoing, and Global Platform has now released

specifications for various aspects of mobile TEEs
8
. The most updated and complete open source

implementation of a TrustZone-based TEE is now the Linaro OpenTEE
9
. Their solution

architecture is reported in Figure 2.3. Another security feature of ARM processors is the XN

(eXecute Never) or NX (No-Execute) bit, that allows the OS to mark memory page as non-

executable, so that the code stored in them will never be run.

Figure 2.3 Linaro OpenTEE architecture6.

7 http://www.arm.com/about/newsroom/arm-gemalto-giesecke-devrient-form-joint-venture-deliver-next-generation-security.php
8 https://www.globalplatform.org/specificationsdevice.asp
9 http://www.linaro.org/blog/core-dump/op-tee-open-source-security-mass-market/

 20 FFI-RAPPORT 16/00319

2.2.2 Android security

Android is the most popular OS around, running on more than 80% of the mobile phones

shipped globally last year as shown in Figure 2.1Error! Reference source not found.. Android

as a mobile operating system is maintained by Google, but it is installed on devices

manufactured by many different companies like Samsung, LG, Motorola, Huawei, Sony and

recently even Blackberry, just to name a few. This means that although the basic Android

features are developed, maintained and documented by Google, different devices may ship with

their own customized versions, possibly with additional modules and features and varying

underlying hardware. This has of course an effect also on the security offered by each single

device, although a vulnerability found in the original Android by Google would most likely

affect all of them in some way. In addition, patches released by Google will not reach all

Android devices simultaneously, because it is the single OEM’s (Original Equipment

Manufacturer) responsibility to provide patches for their own systems. The main components of

the operating system are shown on Figure 2.4, taken from the official Android Open Source

Project web-page. Security is built mostly in the kernel, which is based on the Linux kernel and

from which it inherits the user-based permission system, the process isolation and secure Inter

Process Communication (IPC). Sandboxing, various authentication methods, full disk

encryption, verified boot, VPN and device administration capabilities are also standard security

mechanisms that have long been part of the OS.

Figure 2.4 Android architecture

10

FFI-RAPPORT 16/00319 21

Recently, however, from Android Lollipop, some security features that require TrustZone

support have also been introduced, together with other security enhancements. This is partly

shown in Figure 2.5. The Keystore and Digital Rights Management (DRM) manager have been

moved to the ―secure world‖ so to be inaccessible to the normal OS and tamper-resistant. The

actual services however, must be implemented or provided by the device manufacturer, while

Android simply offers an interface to its apps for using these services if they are present. The

verified boot mentioned earlier, assumes also some kind of hardware support, as it is dependent

on the boot-loader verifying the kernel image with some preloaded key, in order to assess its

integrity
11

.

The NX bit discussed earlier is also actively used, and SELinux (Security Enhanced Linux) [14]

has been integrated in Android to provide Mandatory Access Control (MAC). Unlike

Discretionary Access Control (DAC), MAC can enforce more flexible and fine-grained security

policies that can help to mitigate many types of attacks also after a vulnerability has been

exploited. Android for Work that allows partitioning the device into a Work and a Personal

space is built on these technologies [15].

A last fundamental difference between Android and other mobile platform is the App Store

model. The official android store is called Google Play, and in order to publish third party apps

on it, it is only necessary to pay a nominal fee at registration time for the developer
12

, and sign

the app binary with a self-signed certificate
13

. This gives little trust in the identity of the

developer. In addition there does not seem to be any manual revision of the apps to guarantee

their quality, but only an automatic checker called Google Bouncer
14

. While the effectiveness of

this approach is still debated, it does give some security. The real problem is that users can

decide to install also third party apps from unknown sources that give no guarantees whatsoever

on the origin and genuineness of their apps. In this sense, what distinguishes Android from other

platforms is its openness, which can be good for developers and users, but probably not so good

for security. In order to mitigate this problem, Google introduced Verify Apps
15

, a service that

scans third-party apps at installation time, warning the user of potential harmful applications. In

addition, a service called SafetyNet continuously monitor the device and collects information

about configuration, installed apps, network usage and more, in order to uncover possible

compromise in the form of rooting, installed malware or in general CTS (Compatibility Test

Suite) compatibility
16

. SafetyNet is also provided as a service for app developers that can use it

to ―attest‖ the status of the device before running security sensitive services. Its internal

10 https://source.android.com/security/
11 https://source.android.com/security/verifiedboot/verified-boot.html
12 http://developer.android.com/distribute/googleplay/start.html
13 http://developer.android.com/tools/publishing/app-signing.html
14 http://googlemobile.blogspot.no/2012/02/android-and-security.html
15 http://officialandroid.blogspot.no/2014/04/expanding-googles-security-services-for.html
16 https://source.android.com/compatibility/cts/index.html

 22 FFI-RAPPORT 16/00319

functioning is not clear, but it appears that Google invested a lot of effort to provide a robust

and secure service
17

.

Figure 2.5 Extended security model of Android, including TrustZone support, from [15].

2.2.2.1 Samsung Knox

Since Android can freely be modified by OEMs, we have also other incarnations that provide

extra security on top of what is offered out-of-the-box. The main example is Samsung Knox

[16], a security enhanced version of Android developed by Samsung, which was used as the

base to build the new security functionalities of Android Lollipop
18

, among which Android for

Work. A detailed comparison between the two can be found in [17], but as Figure 2.6 shows,

the main difference is the trusted computing approach they implemented in the pre-boot

environment leveraging the TrustZone capabilities. This provides integrity protection both at

boot and run-time, and even attestation capabilities (more on trusted computing in [12]). In

addition, they offer reinforced work-space containers, called Knox workspaces. Still, the actual

Knox environment, which offers a parallel environment with its own desktop, apps and services,

appears to be nothing more than an app run on top of the common Android kernel rather than in

TrustZone, so the ―secure-world‖ is probably only used to run the pre-boot services rather than a

dedicated secure OS. Besides the dedicated secure workspace, Knox secure APIs can also be

used by other apps to provide additional security on Samsung devices in a transparent way for

the user. Finally, customized secure operating systems based on Knox can also be developed

and installed by Samsung so that they are locked to the specific device at manufacturing time

and no rooting is necessary.

17 https://koz.io/inside-safetynet/
18 https://www.samsungknox.com/en/androidworkwithknox

FFI-RAPPORT 16/00319 23

Figure 2.6 Samsung Knox architecture [16].

2.2.3 iOS security

Apple is the second largest actor on the mobile market, and it is one of the platform providers

that has complete control over the whole production chain. Apple produces even its own

processors, the ARM-based Apple A series. This means that it can tightly integrate hardware

security with OS security, and provide a unified experience to users across different types of

devices as well. App distribution is also centralized in the AppStore, and updates and security

patches can be distributed directly to all Apple devices with no delays typical of the Android

model.

Apple mobile devices rely heavily on hardware-assisted security and have even a dedicated

cryptographic coprocessor called the ―Secure Enclave‖, which has a dedicated secure boot

process in addition to the usual one for the rest of the system, and a secure element, as can be

seen in Figure 2.7. In addition, each device has some unique cryptographic keys and certificates

installed or generated directly in the processor at manufacturing time, which uniquely identify

the device and cannot be extracted. These are used for many security critical tasks like

encryption, integrity checking, secure boot and signature verification. The XN bit is also used to

mark memory pages as non-executable.

The operating system, iOS, is derived from Darwin, an open source Unix system, and

implements the protection at application level like secure installation, sandboxing and file

encryption. Only signed apps can be installed on the device, and once installed they are

sandboxed so that they can only access resources through standard services exposed by the

 24 FFI-RAPPORT 16/00319

operating system. Most of the OS itself runs as an unprivileged user and the whole OS partition

is mounted as read-only, so that a malicious app cannot try and modify it or escalate privileges

[18]. Encryption, shown in Figure 2.8, is performed on a per-file basis, but the keys and the

cryptographic algorithms are handled by the dedicated crypto-processor.

Figure 2.7 Apple mobile security architecture [18].

Apple devices support also separation between Personal and Work space, a wide range of

cryptographic algorithms for encryption, VPN and network protection, and a proprietary mobile

payment solution that leverages the secure element.

FFI-RAPPORT 16/00319 25

Figure 2.8 iOS encryption [18].

As mentioned at the beginning, the distribution of apps is centralized, and the review process

before allowing an app to be published is quite thorough. Apple requires developers to register

to their iOS Developer Program in order to issue a certificate that will be used to sign their apps.

Developers are to be identified personally. Apps are reviewed by Apple also manually in order

to ensure that they operate as described and do not contain obvious bugs or other problems. All

approved apps are then signed by a certificate issued by Apple, so that they can be validated on

the device by the Apple root certificate installed at manufacturing time. Signatures are also

checked every time an app or some code is run [19]. The Apple store is the only way to install

apps on a device, no third party stores are allowed. However, companies can obtain special

certificates to create in-house apps that can be installed bypassing the appstore [18].

2.2.4 Blackberry 10 security

Blackberry (BB) is known for their focus on security and lately they completely redesigned their

platform with BlackBerry 10 (BB10). Previously, they heavily relied on Java and their

proprietary OS BBOS, but now that is gone, and a completely new operating system is at the

base of the platform: the Neutrino QNX RTOS (Real Time OS) showed in Figure 2.9. This OS

is certified to Common Criteria EAL (Evaluation Assurance Level) 4+ and is based on a

microkernel that enforces strong isolation already at kernel level rather than application level
19

,

so that file system, device drivers and network are not part of the kernel.

Security features built on this OS are similar to the ones we have seen for Android and iOS.

Like Apple, BlackBerry also controls the whole manufacturing process, and installs hardware

root of trust in form of keys directly in the processor. These keys are used to provide encryption

also at file level, and to partition the device in Personal and Work space, mostly based on two

different encryption keys [20]. This BYOD solution is called Balance. Actual sandboxing

seems to be based only on user and group IDs and filesystem permissions, rather than some

physical memory separation, virtualization or more advanced mechanism
20

. This means that the

whole security system relies on the expectation that it is impossible to escalate root privileges

thanks to the micro-kernel architecture.

19 http://www.qnx.com/products/certified_os/secure-kernel.html
20 https://www.youtube.com/watch?v=z5qXhgqw5Gc

 26 FFI-RAPPORT 16/00319

Figure 2.9 The Neutrino QNX operating system21.

The secure boot is executed from a root of trust embedded in the CPU itself, as shown in Figure

2.10. The CPU bootloader verifies the digital signature of the bootloader code before it can run,

and the bootloader in turn verifies the digital signature of the OS [21]. In the same figure we see

also that the platform supports four different kinds of applications.

Figure 2.10 BlacBerry 10 platform architecture [21].

Application distribution is, like Apple, handled centrally by an official appstore called

BlackBerry World. The verification process is also similar to Apple, where developers must

first enroll and then submit their apps for verification, which according to BlackBerry is quite

21 http://www.qnx.com/products/certified_os/secure-kernel.html

FFI-RAPPORT 16/00319 27

aggressive
22

. Unlike other platforms, the apps are signed by Blackberry with the developer

certificate online, meaning that they have a copy of the developer’s private key
23

. There are,

however other ways to install apps on a BlackBerry device, but they mostly involved enabling

the developer mode on the device [19].

An interesting curiosity to conclude this section is the recent debut of the last BlackBerry

device, Priv, which runs Android as main OS. BlackBerry claims to have hardened the security

of Android in various ways, by enhancing various security features already existing in Android

and by integrating Blackberry hardware based security
24

. What this means for the future of the

QNX OS is unclear.

2.2.5 Windows 10 Mobile security

The newest incarnation of Windows mobile has been launched in December 2015 and it is not

easy to find detailed information about its security, except for a quite informative video from

Microsoft Ignite 2015 Conference held in May 2015 [22]. All information in this section comes

from that source. In Figure 2.11 we can see that most of the security features resemble those

discussed for the other mobile platforms, so we will focus only on what is different.

Starting from the boot process, the mobile devices running this OS are required to comply with

the UEFI (Unified Extensible Firmware Interface) specifications and implement a secure UEFI

boot. In particular, TrustZone is used to implement a firmware version of the TPM 2.0 [23].

Having a TPM implementation enables also remote attestation, trusted boot and BitLocker

functionalities. BitLocker, in particular, is the choice for disk encryption in Windows 10

Mobile. This means that everything that is written to disk is encrypted with the same key, rather

than having a per-file key like iOS and BlackBerry.

The other interesting feature that distinguishes Windows from other mobile platforms is the

tight integration with its desktop counterpart and the portability of its apps. The idea is to have

what they call ―universal apps‖ that can easily be ported with minimal modifications from

desktop to mobile and vice-versa. Mobile devices can then be turned into full-fledged computers

by connecting them to a dock station that provides keyboard, mouse and a screen.

Finally, it seems that although Windows can be run on devices from different OEMs, Microsoft

will provide centralized security and system updates directly to all types of devices
25

. In this

sense it can be seen as an interesting compromise between the openness of Android and the

centralized control of Apple and BlackBerry.

22 https://developer.blackberry.com/builtforblackberry/documentation/criteria.html
23 http://devblog.blackberry.com/2013/08/code-signing-keys-be-gone-welcome-blackberry-id/
24 http://blogs.blackberry.com/2015/11/why-blackberrys-android-is-best-for-security-and-privacy/
25 http://www.cnet.com/news/microsoft-to-control-software-updates-for-windows-10-mobile/

 28 FFI-RAPPORT 16/00319

Figure 2.11 Windows 10 mobile security architecture [22].

2.3 Discussion

In this chapter we have gone through most of the technical security offered by the four mobile

platforms we considered. Finding the right level of detail is not easy, as we want to include as

many relevant mechanisms as possible while not diving into too many technical details or report

lists of supported protocols and security algorithms. We gave a recapitulatory overview in Table

2.3, but again, in no way exhaustive. A more detailed comparison of some chosen mechanisms

can be found in the appendix. The main point we want to make is that these platforms do offer a

wide range of security mechanisms and have a comparable level of maturity. The most

important differences lie in the type of the deployment model. When more of the actors listed in

Error! Reference source not found. coincide with the same entity, we can expect better

security because there are less conflicting interests, fewer adversaries and therefore fewer

threats. For instance, Apple and Blackberry are at the same time platform manufacturer,

platform providers, marketplace providers, and actually administrators for normal users. This

means that they: have a much greater control over their devices; can enforce a consistent policy

that governs all layers; can push updates centrally to all devices simultaneously; have stricter

policy and guidelines about app development and distribution; and can optimize their software

for a specific hardware also from a security point of view. Google, on the other hand, only

provides the OS, namely Android, which can be customized and run on many different types of

hardware. This causes system fragmentation, delayed updates, greater possibility of bugs in

some customized implementation, and device specific security.

FFI-RAPPORT 16/00319 29

 Mechanisms Android iOS BB Windows

Hardware
level

security

ARM TrustZone
Implementation

dependent

Not clear if

used

Not clear if

used
YES

Root of Trust

(unique key)

Implementation

dependent
YES YES YES

Microkernel NO NO YES NO

Trusted Boot
Implementation

dependent

YES,

Signatures

YES,

Signatures

YES,

TPM,

UEFI

Crypto processor NO YES NO NO

Kernel/OS
level

security

Encryption
Full-disk

encryption

Full-disk +

per-file

encryption

Full-disk +

per-file

encryption

Bit-Locker

Sandboxing/

Permissions
YES YES YES YES

Exploit

Mitigations
NX, ASLR NX, ASLR NX, ASLR NX,ASLR

Network security

Certificate

pinning, VPN,

TLS, EAP…..

VPN, TLS,

EAP…..

VPN, TLS,

EAP…..

VPN, TLS,

EAP…..

Authentication

(Screen lock)

PIN, password,

pattern,

fingerprint, face

recognition, …

Passcode,

fingerprint
Password

PIN,

Password

Infra-

structure

security

Native BYOD

support

Android for

Work

iOS for

enterprise

BlackBerry

Balance
YES

App-store
Google Play

Third parties
App Store BlackBerry

Windows

Store

Security updates Delegated Centralized Centralized Unclear

Table 2.3 Simplified summary of security mechanisms in the four mobile platforms.

 30 FFI-RAPPORT 16/00319

Besides, to be consistent with their open model, Android allows also users to install unverified

apps from third party app-stores if they wish to do so. Microsoft seems to have moved to a more

open approach where they provide the OS, but still require the manufacturer to implement

specific hardware support, and retain the possibility to update the software directly. We expect

therefore that closed systems are easier to protect, and therefore less subject to infections or

compromise. The data in the next chapter seems to partly confirm this assumption, but a more

careful analysis reveals that this is not completely true, and that it may be possible to achieve

similar levels of protection in all these platforms given a more restrictive deployment setting.

As a final note, we would like to point out that the security presented here assumes an attack

model where we can somehow trust the infrastructure and where an attacker does not have

prolonged physical access to the device. For instance, if we cannot trust the mobile network

protocols to implement adequate protection, an attacker could use an infrastructure-based attack

to break security. Using false base stations to eavesdrop on the user calls or send remote attacks

to the baseband processor is a prime example. Similarly, if we cannot trust the marketplace

providers to thoroughly verify apps before making them available for download, there is little

the device can do on its own to prevent malicious apps to be installed. Supply chain attacks,

where malicious code may intentionally be injected in the device at production time, either by

an attacker or by the manufacturers themselves, is also something that goes beyond the security

mechanisms presented here. Finally, mobile devices are difficult to protect physically due to

their mobile nature. It is easier to forget them unattended, lose them, borrow them or steal them.

An attacker with enough time, motivation and resources will most likely manage to bypass most

security on the average device in most cases. Nevertheless, by being aware of these weaknesses,

it can be possible to design ad-hoc mitigations or additional security measures that can reduce

the risk of compromise to an acceptable level for some specific situations.

3 Security in practice

From what we presented in Chapter 2, it is clear that security is emphasized in modern off-the-

shelf smartphones and tablets. However, the demand for new fancy consumer functionalities

and the need to be the first to offer them on the market still seems to be the priority. So, while it

is true that security is getting more attention, the probability of finding new bugs and

vulnerabilities in these increasingly larger systems is also growing. In addition, despite the

efforts of market providers to check for malicious apps and to enforce some quality standard
26

,

poorly coded and harmful apps still find their way also in official app stores
27

. Even genuine

apps that appear to do just what they advertise can become a security threat if used in the wrong

way or if not properly tested against the specific security requirements of the environments

26 https://developer.apple.com/app-store/review/guidelines/
27 https://blog.lookout.com/blog/2016/01/06/brain-test-re-emerges/

FFI-RAPPORT 16/00319 31

where they will be used
28

. Users are also part of the problem as they often consider security as a

hindrance or do not pay particular attention to the risks to which they expose their devices.

Despite this, we will show how statistics indicate that only a small percentage of devices seem

to have been successfully compromised by some known threat, suggesting that the security

mechanisms in place do work as intended in the majority of situations.

In the remainder of this chapter we review various security reports reporting these statistics

together with a selection of known vulnerabilities in order to understand exactly what types of

threats and attacks these devices are exposed to, whether they manage to protect against them,

and if not, why.

3.1 Threats, vulnerabilities and related concepts

In order to correctly interpret the data that we are going to present in this chapter, it is important

to clearly define some basic security concepts like threats, vulnerabilities and attacks.

A threat in general is defined as ―any circumstance or event with the potential to adversely

impact organizational operations (including mission, functions, image, or reputation),

organizational assets, or individuals through an information system via unauthorized access,

destruction, disclosure, modification of information, and/or denial of service. Also, the potential

for a threat-source to successfully exploit a particular information system vulnerability‖ [24].

Here we focus especially on this last sentence, where the threat-source can be identified with an

attacker and the threat is the possibility of the system’s confidentiality, integrity or availability

being compromised through the exploitation of a particular vulnerability.

A vulnerability is a ―weakness in an information system, system security procedures, internal

controls, or implementation that could be exploited by a threat source‖ [24], but not all

vulnerabilities are as severe or easy to exploit. This is why all vulnerabilities documented in the

Common Vulnerabilities and Exposures (CVE) system
29

 are given a severity assessment based

on the Common Vulnerability Scoring System (CVSS) standard, now at version 3.0
30

. This

assessment takes in consideration various metrics, like for instance what kind of access the

attacker needs, if remote or local, how difficult it is to meet all conditions required for the

exploitation to be successful, whether authentication is required, and so forth.

This leads us to the concept of attack. An attack is the series of actions that an attacker must

execute in order to exploit a particular vulnerability on the system and realize the threat. Part of

the attack is finding a path that allows getting to the system where the target vulnerability is

located in order to execute the actual attack. The elements constituting this path are called attack
vectors. Attack vectors can be classified according to what role they have in the attack, for

instance ―channels‖ that allow to transfer the code from one place to another, ―enablers‖ that

allow the malicious code to be unpacked or executed, ―targets‖ that are the services or the data

28 http://www.gartner.com/newsroom/id/2846017
29 https://cve.mitre.org/index.html
30 https://www.first.org/cvss

 32 FFI-RAPPORT 16/00319

vulnerable to the attack, and so forth [25]. All the possible attack vectors, weighed by their

criticality, form the attack surface of the system, which can give a measure of how probable or

easy it may be to successfully attack the system and exploit its vulnerabilities to realize a threat.

The malicious code used to actually exploit the target vulnerability and achieve the attacker’s

goal is called payload, while the object hiding and transporting the code is called the carrier.

Figure 3.1 An example of an attack where the goal of the attacker is to gain root privileges on
the device by executing a payload that targets a buffer overflow vulnerability in the
device sandbox. This can be achieved by embedding the payload in a malicious app
and trick the user into installing it from an app-store without review process. This
can be enabled by the user by allowing side-loading. Other attack paths are also
possible, like gaining physical access to an unlocked device.

To illustrate the concepts explained in this section we show some examples of attacks and attack

vectors in Figure 3.1. This is not meant to be exhaustive or completely exact in any way, it is

only meant to give the reader a feeling of how the different concepts are related to each other. In

fact, another important aspect that does not emerge from the figure, is that for an attack to be

successful, it is not always sufficient to exploit only a single vulnerability in one target. More

often a series of pre-conditions must be satisfied, and more security mechanisms need to be

circumvented in order for the attacker to reach his goal. So the picture is much more complex

than shown here. However, it does contain some typical attack vectors that are very relevant for

mobile devices [26]. In particular, malicious apps are the most common carrier of malicious

code. The reason being that there are various channel attack vectors that can be used to

FFI-RAPPORT 16/00319 33

distribute them and it is relatively easy to inject a malicious payload into another seemingly

innocuous application and trick the user into installing it on the device. A resourceful attacker

may even manage to install them on the device before it reaches the market, by performing a so

called supply chain attack. This type of threat is very insidious and particularly prominent when

governmental threat-agents are involved. Official and third-party app-stores are, however, the

typical channels. In the first case a weakness in the review process is to be used to first publish

the malicious app, so it is much more likely to find these apps in third party stores with little or

no review. Alternatively they can be directly installed remotely from malicious web-sites or

manually installed by an attacker with physical access to the device. An enabler that is needed

in almost all these cases is that the user must intentionally or indirectly allow installation of

untrusted application. This can be done on some platforms by changing some security settings,

while in others it is possible only by forcefully bypassing the system locks. We can distinguish

three such techniques:

 Jail-breaking: is the process of removing restrictions imposed by the manufacturer

on the device, like the impossibility of installing non-approved third-party

software. This is in itself an attack that exploits a vulnerability in the system as it is

not a provided feature.

 Rooting: refers to gaining root privileges in the system, so that full control can be

achieved. For instance, it becomes possible to turn off security mechanisms, grant

access to non-trusted application, remove system components, and so on. Unlike

jailbreaking, rooting is sometimes allowed on some systems like Android, but if

not it can also be achieved through a vulnerability exploited by malware or users

interested in customizing their device.

 Unlocking: a third alternative is to unlock the boot-loader of the device in order to

install a custom OS already configured with root access. This option can also either

be offered as functionality or achieved through exploitation.

It is easy to see how deactivating or compromising the security mechanisms in place on the

device opens up the system also to external attackers, that can now more easily reach the

vulnerability they try to exploit. The fact that ―normal‖ devices are less susceptible to infections

compared to ―rooted‖ ones is also confirmed by the data presented in the next section.

Summarizing, mobile devices can be vulnerable to attacks similar to those of their stationary

counter-parts, like supply chain attacks and remote attacks through malicious web-sites, mails or

similar. In common with portable devices like laptops we find attacks that leverage local access

like Wi-Fi, Bluetooth and NFC (Near Field Communication). However, they are also more

exposed to physical attacks, given they are more easily accessible: removing the memory card

or connecting them to a malicious device via USB is relatively straightforward. Attacks through

the mobile network are also exclusive to this class of devices: malicious base-stations,

vulnerabilities in the base-band processor, and faulty processing of SMS and MMS are also all

possible entry points to the system.

 34 FFI-RAPPORT 16/00319

One last observation is that it is difficult to classify what code or activity is actually malicious.

Based on different definitions, one can get different statistics on the infection rates of active

devices. For instance, some apps can be considered malicious even if they do not exploit any

vulnerability. A lot of sensitive data can be collected from a device simply by having

completely legitimate permissions. Examples are: contact lists; position; IP-address; and phone

number. Again, the user can make a big difference by wisely choosing what to trust and what

not at installation time. The numbers reported in the next sections come from documents that

may have different definitions of malware and harmful code, but since they all seem to validate

each other we will not discuss these definitions in detail. Just to give an example, though, as of

11/1/2014 Google used the term PHA (Potential Harmful Applications) to indicate the

following categories: Generic PHA; Phishing; Rooting Malicious; Ransomware; Rooting; SMS

Fraud; Backdoor; Spyware; Trojan; Harmful Site; Windows Threat; Non-Android Threat; WAP

Fraud; and Call Fraud [27].

Therefore, although the existence of a vulnerability can in principle constitute a threat, it is not

enough alone to claim that the system is not secure, because whether the threat can be realized

in practice depends also on the existing attack surface. For instance, Java-script vulnerabilities

in a web-browser may not be exploited if Java-script is disabled, or if no internet connection is

available. The reader should keep this in mind when considering the infection rates of modern

mobile devices reported later in this chapter. Those numbers are not a definitive indication of

their security, but they indicate only how secure they are in average given the typical usage and

configuration in a global consumer market setting. What they can tell us, is which attack

vectors are more likely to be used in modern mobile devices. This knowledge can later help us

to reduce the attack surface by adopting additional security mechanisms, mitigations and careful

usage, so that adequate security may be provided in specific scenarios, despite existing

vulnerabilities.

3.2 Overview of security reports and statistics

Here we give an overview of the status of vulnerabilities and known infection rates based on

publicly available reports and sources. Most of this data comes from the feedback that antivirus

companies get from the devices on which their software is installed, so it gives only a partial

sample of the complete picture. In the case of Android, however, the feedback comes from the

Google services installed on the majority of Android devices and it gives a much more

comprehensive overview compared with antivirus software feeds. Also, some statistics refers to

the number of devices potentially exposed to a threat, i.e., which have an unpatched

vulnerability, while others refers to actually infected devices, i.e., where some vulnerability was

actually exploited. We will, for what is possible, distinguish between the two. One thing we

have not considered here are the reports investigating the number of apps containing malicious

code or new malware found in the wild. Those numbers would only give an idea of the potential

threats around, but not how effective they are, which is our main concern.

FFI-RAPPORT 16/00319 35

3.2.1 Cross-platform vulnerabilities

Some vulnerability might affect more than one platform because they are found in some

standard common component, library or protocol used by all of them. Examples are the SSL

vulnerabilities HearthBleed
31

 and Freak
32

 found in the Open SSL library used by Android, iOS

and BlackBerry. Vulnerability in browser plug-ins like Adobe Flash
33

 can also affect various

platforms simultaneously. It is not clear whether any of these vulnerabilities was at any point

exploited on mobile devices. aseband processor vulnerabilities may be platform specific, but

often the same firmware and radio processor component is used by different manufacturers in

their devices [28] and vulnerabilities can be leveraged through the mobile network by using

false base-stations as it was recently demonstrated for a Samsung device
34

.

3.2.2 Android

As shown in Figure 3.2, Android is consistently reported as the platform most exposed to

attacks, with 99% of all mobile malware targeting it [29]; this despite having less than half of

the documented vulnerabilities compared with iOS
3536

. There are mainly three reasons for this

[30]. One is that Android is the most widespread platform on the mobile market, and the sheer

number of potential targets alone makes it particularly attractive for attackers. The other is that

Android is very fragmented, which makes it more difficult to keep all existing versions up-to-

date, especially since the responsibility for patching the different versions falls to the specific

manufacturer rather than Google itself. This means more vulnerable targets. Last, but not least,

the possibility of easily enabling the installation of untrusted sources (side-loading) without the

need of rooting the devices has led to the flourishing of third-party app-stores where the vetting

process of applications is often non-existing. Here it is extremely easy to publish apparently

legitimate apps that have been repackaged with some hidden malicious code and then self-

signed by the attacker.

31 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
32 https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0204
33 http://www.adobe.com/support/security/bulletins/apsb13-11.html
34 http://www.theregister.co.uk/2015/11/12/mobile_pwn2own1/
35 https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
36 https://www.cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49

 36 FFI-RAPPORT 16/00319

Figure 3.2 Despite fewer vulnerabilities, Android is the most targeted platform.

However, the data in the Google report on Android security for 2014 [27], confirmed also by

other sources [31, 32, 33], reveals some interesting details that indicate that this difference is not

due to inadequate security, but rather other external factors. In fact, it appears that worldwide

only less than 1.3% of Android devices is infected by some sort of PHAs. Of course, 1,3% of

hundreds of millions of devices is still a big number, but if the reason why Android stands for

most infections among mobile platforms wes just bad security, we would expect much higher

infection rates. Instead, in accordance with our earlier observations, it turns out that if we

consider only devices that are not rooted and that only download apps from Google Play store,

the number of infected devices is less than 0.1% as shown in Figure 3.3. Non-rooted devices

that download from other stores than Google Play (side-loading), account for 0.7% of the

infections, while devices with some PHAs installed (including also rooting apps) are in average

around 0.5% of the total. In other words, devices whose integrity has not been compromised by

rooting or with side-loading enabled, and that are therefore comparable with closed systems like

iOS and BlackBerry, are an almost negligible percent. It is also interesting to see how there are

huge variations by locality. In some countries like China where Google services are not

available and side-loading and rooting are therefore necessary to use Android devices, the

percentage of infected devices reaches peaks of over 7%. One thing to point out is that Google

did not start detecting devices with side-loading before the last quarter of 2014, so it is a

somewhat limited sample time-wise. Nevertheless, the amount of infected devices during 2014

with and without side-loading, excluding rooting applications, has been lower than 0.5 %.

375

130

Vulnerabilities 2015

iOS

Android 99 %

1 %

Malware

Andoird

Others

FFI-RAPPORT 16/00319 37

Figure 3.3 In practice the number of infected Android devices that have not been rooted and
only use Google Play to install apps is around 0.1% of all Android devices
worldwide. The reason why so much malware targets Android is that the amount of
devices that download from unsafe sources or are rooted, and therefore are easier
to compromise, is much higher than for other platforms.

The incidence of exploitation attempts for other types of vulnerabilities outside of Google Play

is also discussed in the Google report, but it is used mostly to show the effectiveness of the

Verification Apps Tool and not very relevant to this report. The research in [27] has also not

uncovered any large scale malicious exploitation attempt of other SSL vulnerabilities.

This does not mean that downloading apps only form Google Play guarantees 100% protection.

There is, after all, a small percent of such devices that are somehow infected. This can be

explained in various ways. One is that not all malicious apps can be detected by Bouncer, and

therefore some end up in Google Play [34, 35]. The other is that legitimate, innocuous apps

contain exploitable vulnerabilities and can be used as an attack vector once installed [34]. There

are even some documented cases in which malicious apps where pre-installed on the phone,

meaning that the attacker managed to subvert the supply chain
37

. Additionally, vulnerabilities

that make it possible to inject malicious code into legitimate applications without altering the

original digital signature
38

, or create fake certificates
39

, could also be used to install malware

without enabling untrusted sources, or pushing malicious updates on legitimate installed apps.

Besides, due to the high fragmentation of Android versions, it is also possible that most

37 https://blog.lookout.com/blog/2014/12/04/deathring/
38 https://bluebox.com/uncovering-android-master-key-that-makes-99-of-devices-vulnerable/
39 https://bluebox.com/android-fake-id-vulnerability/

Non-infected
98.70%

Rooted
0.50 %

Side-loading
0.70%

Unmodified
0.10%

Infected 1.3 %

Android devices only

 38 FFI-RAPPORT 16/00319

infections affected older versions of the platform that still have many vulnerabilities that have

been patched in newer devices.

Finally, it is quite certain that many infections have not been detected at all, either because the

infected device does not use Google services or any anti-virus, or because the exploited

vulnerability is either still unknown or difficult to detect. Other known vulnerabilities

discovered recently, like Stagefright
40

, could also have been exploited using other attack vectors

than side-loaded application and network access, making it unclear whether someone has been

affected by them. A further possibility is that an attacker can have physical access to the device,

and bypass security if the USB debugging option is enabled, and the screen-lock is either not

active or easy to bypass. Even installing forensics tools in the boot partition to read volatile

memory would be possible given the right conditions [36].

3.2.2.1 TrustZone TEE

We mentioned in Section 2.2.2 that some OEMs provide a TEE implemented in TrustZone, in

addition to their customized Android OS. Unfortunately, exploits have been found also for this

―secure‖ solution. In 2013 the Motorola boot-loader was unlocked through a vulnerability in the

TrustZone kernel
41

; the same year Thomas Roth showed how to create TrustZone based rootkits

[37]; and Di Shen showed how he hacked the Huawei’s TEE at Black Hat 2015 [38]. Wrong

implementation of secure functionalities using TrustZone has also been shown to be a real

security problem [39].

3.2.3 iOS

As mentioned in the previous section, iOS has actually more documented vulnerabilities than

Android, but despite this it has generally been considered more secure, and has been the

platform of choice for the enterprise market [40]. The main reason lies probably in its closed

nature that makes it much more difficult to allow for untrusted apps to be installed, and easier to

keep it updated. iOS devices need, in fact, to be jail-broken in order to use third-party app-

stores, and this in turn requires the exploitation of some vulnerability in the system. Still, around

8% of iOS devices globally are estimated to have been jailbroken [40], and it is mostly these

devices that have been targeted and successfully infected by malicious code, at least until

November 2014. Before that, in fact, only two cases were known of malicious apps that had

bypassed security controls and had been published on iTunes (and could therefore be installed

on non-jailbroken devices): the LTBM adware and the FindandCall worm. Then WireLurker

was discovered [41], and Pawn Storm
42

 and Yispecter
43

 followed the next year. Another

potential attack was also found in 2014 called Masque Attack
44

. What all of these have in

common, is the new attack vector used, namely ad-hoc (or in-house) provisioning through

enterprise certificates [42]. A proof of concept showing how a similar attack could be performed

40 https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
41 http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
42 http://blog.trendmicro.com/trendlabs-security-intelligence/pawn-storm-update-ios-espionage-app-found/
43 http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-

private-apis/
44 https://www.fireeye.com/blog/threat-research/2014/11/masque-attack-all-your-ios-apps-belong-to-us.html

FFI-RAPPORT 16/00319 39

by connecting the device to a fake charger was also shown in 2013 [43], but since then some

new security mechanisms have been implemented to prevent that specific attack.

Apple provides, in fact, an alternative and legitimate way to install apps on non-jailbroken

devices that bypasses iTunes and all the security controls: enterprise provisioning. This method

allows enterprises to install or push their own apps without going through iTunes, but in order to

do that a special enterprise certificate must be used to sign them. Such certificates are harder to

obtain than usual developer certificates
45

, exactly because they might be misused in the way

they did. Still, someone went to the trouble of setting up a fake company and paid to obtain such

a certificate, in order to spread malware. Also, WireLurker could spread only through USB

connection to an infected MAC workstation (where it is possible to install untrusted apps),

while Yispecter could also be directly downloaded and installed on the mobile device.

Thus, attacks on iOS are also possible and just as dangerous as on Android.

3.2.4 BlackBerry 10 and Windows 10 Mobile

These two mobile platforms have a very small share in the mobile market, which also means

that they are not a particularly interesting target for most attackers. This may be one of the

reasons why not many vulnerabilities and cases of exploitation are known for them. Windows in

particular, just came out a couple of months ago, so there is no known exploited vulnerability as

of yet. However, one observation we can make is that with ―universal apps‖ there is a risk that

vulnerabilities found on Windows Desktop applications may also apply to their mobile

counterpart, and that the effort to give a unified experience to mobile and desktop users may

also lead to common vulnerabilities.

As far as BlackBerry 10 is concerned, quoting from [19]: ―One public jailbreak thus far has

affected QNX-based BlackBerry devices — DingleBerry, released in November 2011
46

. No

jailbreaks have directly affected BlackBerry 10‖. In general only few vulnerabilities are

reported
47

, and many seem to belong to the cross-platform type mentioned in Section 3.2.1.

Being that BlackBerry is mostly used in governmental environments, it can also be the case that

some successful targeted attacks have been performed given the high profile of the targets, but

that they have been kept quiet or never discovered. Research is also very limited compared to

Android or iOS, as we are aware of only 4 such works [44, 45, 46, 47, 48].

3.3 Discussion

One problem of the analysis in this chapter is the unbalance in the available data for the

different mobile platforms. While for Android we have both various independent sources like

anti-virus companies and Google itself that share their data, much less extensive statistics are

45 https://developer.apple.com/programs/enterprise/enroll/
46 http://crackberry.com/so-you-want-rootjailbreak-your-blackberry-playbook-dingleberry-here%E2%80%99s-how-do-it
47 http://support.blackberry.com/kb/articleSearch?language=English&keyword=vulnerability

 40 FFI-RAPPORT 16/00319

available for iOS and close to nothing for BlackBerry and Windows 10. Thus, one should not

conclude that one platform is more or less vulnerable than others solely based on this data.

Nevertheless, one thing that we can conclude is that the preferred carrier for malware in mobile

platforms seems to be malicious apps. Android is not surprisingly the most exposed due to its

overwhelming market-share, the possibility of side-loading and the large number of third-party

app-stores present on the Internet, but we saw how iOS also is affected thanks to a similar type

of mechanism based on enterprise certificates, although at a smaller scale.

Ignoring intentionally rooted and jailbroken devices, or devices that must use side-loading

because of the lack of official app-store availability in a certain geographical area, we are still

left with a small percent of infected Android devices that apparently are used and configured

correctly. In Section 3.2.2 we tried to explain what other attack vectors could have been used in

these cases, but we cannot be certain, so we can only assume that despite much advances in

security, mobile platforms still are vulnerable to various types of attacks, and that attack

strategies evolve continuously in order to exploit any possible weakness in the security model.

However, that so very few devices in percentage have been affected is an indication that

security does work quite well in general, given that those numbers are indeed representative of

the actual situation, and that the situation is much less dramatic than often depicted in the news.

The better security is implemented at platform level and integrated with the infrastructure, the

more difficult it becomes for the attackers to find easy attack vectors and for users to

intentionally or accidentally disable security.

Still, perfect security does not exist. Some malicious apps will always slip through the official

app-stores security controls, and some user will be tricked into installing it. Users will also often

not like the limitations imposed by manufacturers and will try to break them exposing their

devices to multiple threats. Social engineering will also be a prominent threat no matter what

security is in place. However, most of these problems affect mostly the mass consumer market,

where it is statistically more likely to meet all necessary conditions for a successful attack. In a

more controlled and restricted environment, where it is possible to enforce centralized security

policies, enhance security, limit risky activities and educate users, many of these threats could

be eliminated or at least mitigated
48

, although targeted attack may become more prominent. In

the next chapter we look at existing approaches to achieve different level of controls on a

mobile device.

48 A report from Lookout seems to contradict this last statement [40],a s they found various malware on devices associated with

different enterprises, but they do not specify what type of device management solution they used and how they were configured.

FFI-RAPPORT 16/00319 41

4 Possible approaches to enhance security

The previous chapter emphasized how most security threats come from installing untrusted

apps, either by using side-loading, or visiting malicious web-sites or not carefully reading

warning messages. Rooting or jailbreaking a device makes things even worse by deactivating

critical security mechanisms. If COTS mobile devices are to be adopted for security critical

tasks, we need at the very least to eliminate these prominent threats, and try to mitigate the

remaining ones.

The factors that can affect the trust we can have in a device and its security, are mainly four: its

intrinsic security; the type of usage; the owner; and the user. With the first, we mean the

platform security that is already built in the device, which gives us a baseline security: the

software and firmware security mechanisms, the hardware security, and possibly its

certifications. In other words, what we have seen in the first two chapters. The type of usage can

include: the applications that are going to be installed on the device, its configuration, the type

of maintenance it is subject to, the tasks it will perform, the data it will handle, and its physical

protection. We distinguish then between owner and user as they may not necessarily be the

same. The owner is the administrator, who has the highest privileges on the phone and can

decide what can or cannot be installed and which configuration to enforce. The user is the one

that has physical control of the device in practice and can potentially expose it to most threats

by misusing it, losing it or intentionally bypassing the predefined configuration. In addition we

should also trust the infrastructure, but this is a separate topic.

The relationship between owner and user is quite central in recent mobile devices, which offer

native support for three types of ownership models. The reason is that steadily more enterprises

understood that it can be advantageous to let their employees use their private devices also for

work activities, but it has so far been challenging to find the right balance between the degree of

control needed by the enterprise to trust the device and the users’ right to freely use their

devices. This is changing thanks to new security mechanisms which enterprises can leverage to

enforce their security policies without necessarily taking complete control of the device. Still, in

some environments with even higher security requirements like classified military network,

even having complete control of the device may not suffice. In this case additional

functionalities and assurance may have to be implemented in the platform itself, or dedicated

solutions are to be developed.

In the next sections we discuss the different ownership models and what they can give in terms

of security when applied to commercial devices, and how commercial and military actors are

also trying to develop dedicated secure solutions by using commercial mobile platforms as a

starting point.

 42 FFI-RAPPORT 16/00319

4.1 Ownership models supported by COTS device

The latest releases of all mobile platforms we reviewed in the first two chapters come now with

native support for BYOD solutions, which until now had to be especially developed as add-ons

with limited capabilities. Mainly three ownership models are provided: 1) the user retains full

control over the whole device, 2) the enterprise can control a part of the device and 3) the

enterprise has full control. Each can be suitable for different types of scenarios, with varying

degree of security.

4.1.1 User ownership

There are some situations when it may be desirable to let people use some service or application

on their own devices, without any particular control or requirement. The reasons can be many.

One scenario is emergency situations, where it may be essential to collect as much information

as possible to create a complete picture of the situation. In this case any bystander or responder

can just download an app on their phone and use it to take pictures, videos, and report different

kind of events. Another is that a company may not have the resources to buy, configure or

maintain some dedicated devices, and therefore are willing to accept the risk of letting their

employees use their private devices for work related tasks. This use model implies, in fact, that

the enterprise has virtually no control on the device, which may already be compromised by

some malware, be rooted or generally not trustworthy.

In this model, the enterprise service comes as a dedicated app(s), and all security would have to

be implemented in the application itself, by leveraging either the platform security mechanisms,

or custom security packaged within the app itself. One can potentially achieve a good level of

security given that the app is well written, includes proper encryption, authentication and secure

communication components, and that the underlying platform is not already compromised. The

problem is that we cannot put much trust in the device itself as we have no reliable way to

assess its trustworthiness. Hence, the risk of compromise is relatively high. Still, interesting use-

cases, where a risk analysis may show that the benefits outweigh the potential risks, surely exist.

4.1.2 BYOD: shared ownership

A more advanced version of installing just some applications on a private device consists in a

complete BYOD solution. Until now, the main limitation was that users had to completely give

up control of their devices in order to install company software that enforced the company’s

security policies and monitored the status of the device. This was especially bothersome when

the security policy required wiping the memory of the phone if a violation was detected,

including the user’s private data, or made the user unable to install their favorite apps. However,

newer devices support natively a partitioning of the phone into a personal and a work profile,

which are managed at system level to guarantee separation between the two. In this way, the

employer can own the work profile, while the user can still control the device itself and the

personal profile. Each profile would have its own applications, policies, dedicated encryption,

authentication, and data. Deleting the work profile, would therefore not affect user data. We

FFI-RAPPORT 16/00319 43

have seen examples of such solutions earlier in the report: Samsung Knox, Android for Work,

iOS for Enterprises and BlackBerry Balance.

It is important to remember that these solutions are still based on the assumption that the user

cannot root or jailbreak the device without that being detected by the security mechanisms

underlying the work profile, which can then be blocked for access. A malicious user may still be

able to compromise the system before activating the work profile exploiting new vulnerabilities

that can go undetected before the work profile is activated, and therefore potentially break

company policies at a later moment. Still, the bar is much higher than for the previous

ownership model, as these BYOD solutions also have effective mechanisms to detect whether a

device has been tampered with, and lock the user out of the work environment. An example is

the KNOX bit
49

 used in Samsung devices with Knox, and the automatic wiping of the device in

case the boot-loader is unlocked in order to install a new custom OS, which is present in most

devices.

4.1.3 Enterprise ownership

Company owned devices differ from usual BYOD solutions in that the device is bought and

configured by the company before being handed over to the employee. It can also be the case

that no personal profile is set up at all, making the device at all effects, just a work tool. This

guarantees better control to the company that knows the initial status of the device when the

work profile is configured, and can also regularly recall devices for inspection and

reconfiguration. In this case it is easier to monitor and detect compromise attempts, although

there is always a chance of exploitation.

4.1.4 Management solutions

A BYOD solution needs some form of device and application management in order to define

and enforce security policy when the device is both on-line and off-line. Mobile platforms

provide built-in security functionalities for these purposes, but additional management software

that builds on them is needed to achieve good usability and efficiency. There are mainly four

types of tools one can use to administrate different aspects of the device:

 Mobile Device Management (MDM) deals with the administration and

configuration of the device itself. For instance: enrolment; configuration;

enforcement of password, protected connections and other policies; application and

patch provisioning; and remote monitoring. These tools are implemented using

application programming interfaces (APIs) released by mobile operating system

providers
50

.

49 https://www.samsungknox.com/en/faq/what-knox-warranty-bit-and-how-it-triggered
50 http://asmarterplanet.com/mobile-enterprise/blog/2014/09/mdm-mam-emm.html

 44 FFI-RAPPORT 16/00319

 Mobile Application Management (MAM) provides individual app administration,

provisioning and monitoring usually through a dedicated enterprise appstore. Some

solutions provide also an SDK to add security extensions to applications [49].

 Mobile Information Management (MIM) or Mobile Content Management (MCM)
tools are used to protect data. This means encryption and strong authentication

used to access data on the device or from the device. In some cases even secure

containers where applications can run securely.

 Enterprise Mobility Management (EMM) suits provide all or some of the above

listed functionalities in a consistent framework.

Although it is possible to exercise a good deal of control on a device by using these tools, one

must not forget that their functionalities rely on the assumption that the underlying security

mechanisms offered by the OS and the hardware are working correctly. There is unfortunately

no sure way of detecting whether a device has been rooted or jailbroken [50, 51]. An overview

of commercial EMM can be found in [49].

4.2 Dedicated solutions

Although a managed enterprise owned device can already provide a degree of security adequate

for many situations, there are situations when additional features at platform level or even

higher security are required. In this case dedicated solutions are usually developed. In particular,

here we are interested in commercial technology that has been hardened for military or

governmental use, and in military projects experimenting with the possibility of adopting

commercial mobile devices for tactical use. We do not consider dedicated products specifically

developed from the ground up for higher assurance.

4.2.1 Commercial (based) products

In the U.S., the NSA (National Security Agency) has started a the ―Commercial Solutions for

Classified‖ (CSfC) program to accelerate the adoption of commercial products for use in

governmental and military offices, including mobile devices, and redacted a guide that defines a

layered approach to harden the security of mobile devices in order to handle sensitive

information securely: the NSA’s Mobility Capability Package
51

. Devices that follow these

guidelines and are approved according the Protection Profile for Mobile Device Fundamentals
52

are listed in the ―Commercial Solutions for Classified Program Components List‖
53

. Among

them we find
54

: the Boeing Black phone
55

; Samsung Galaxy Note 4 with Android 5; Samsung

Galaxy S6; Microsoft Windows 10; Samsung Galaxy Note 5 and Tab S2; and Apple iOS 9.

However, whether they can only handle sensitive but unclassified information or also higher

51 https://www.nsa.gov/ia/_files/mobility_capability_pkg_vers_2_3.pdf
52 https://www.niap-ccevs.org/pp/pp_md_v2.0.pdf
53 https://www.nsa.gov/ia/programs/csfc_program/component_list.shtml
54 https://www.niap-ccevs.org/pp/PP_MD_v2.0/
55 http://www.boeing.com/assets/pdf/defense-space/ic/black/boeing_black_smartphone_product_card.pdf

FFI-RAPPORT 16/00319 45

classification levels is unclear. Given that the guidelines mainly require standard security

mechanisms like those presented in Chapter 2, we assume that it is the former case, unless

additional security measures and a dedicated infrastructure are in place to form a complete

secure solution as indicated in the Mobile Security Reference Architecture document by Federal

Chief Information Officers (CIO) Council
56

.

The Blackphone by Silent Circle
57

, which may appear as an example of a particularly secure

phone, focuses mostly on privacy rather high-level security. Still, removing third party services

from Google and allowing the user to deactivate privacy sensitive peripherals, can indeed

provide better security than most other commercial devices, but it is unlikely good enough for

classified use. In the same category we find the Cryptophone 500i by GSMK, which also runs a

hardened version of Android, with dedicated baseband protection and strong encryption,

configurable security profiles and verifiable source code
58

.

A commercial security solution that has been used in conjunction with other technologies to

develop products that may be approved for higher classifications like RESTICTED is Samsung

Knox. The Green Hills high assurance separation kernel Integrity for instance has been

integrated in the Samsungs Knox mobile enterprise family to offer strong isolation in Android
59

.

We speculate that this solution adds a layer of virtualization so that the Knox environment can

run in a separate partition with its own kernel and therefore offer better isolation. It is not clear

whether commercial Samsung devices actually adopt this solution. Another example is the

Tiger/R from Sectra, a known producer of secure mobile phones for classifications as high as

SECRET
60

. This phone runs on a security enhanced version of the Knox OS and is designed for

use at the RESTRICTED security classification level in Europe
61

. A similar level of certification

was also announced for a specific BlackBerry solution in Germany
62

.

Finally, as part of the CSfC program, the Defence Information System Agency (DISA)

announced that their Defense Mobile Classified Capability-Secret (DMCC-S) is fully

operational. A mobile phone for use at the SECRET classification based on commercial

technology is in fact to be expected later this year
63

. Apparently it will be able to connect to

SECRET networks through the Secret Internet Protocol Router Network (SIPRNet) and will not

store data at rest, but provide email and secure voice communications via a secure Voice over

Internet Protocol (VoIP) capability
64

.

56 https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-Reference-Architecture.pdf
57 https://www.silentcircle.com/products-and-solutions/devices/silent-os/
58 http://www.cryptophone.de/upload/files/46/original/CP500i-Brochure.pdf
59 http://www.ghs.com/mobile/products/samsung-knox-hypervisor/
60 http://communications.sectra.com/news-and-media/press-releases/eu-approves-new-model-the-sectra-tiger-secure-mobile-phone-
secret
61 http://communications.sectra.com/news-and-media/press-releases/samsung-and-sectra-in-cooperation-secure-smartphone-

european
62 http://press.blackberry.com/press/2013/blackberry-10-receives-nato-approval-for-restricted-communicatio.html
63 http://www.c4isrnet.com/story/military-tech/mobile/2015/09/03/pentagon-top-secret-smartphone-expected--fall/71648428/
64 http://www.disa.mil/enterprise-services/mobility/dmcc/secret

 46 FFI-RAPPORT 16/00319

4.2.2 Dedicated proprietary solutions

There are also mobile solutions that are not based on commercial technology found in COTS

products, but are specifically developed from the ground up to achieve higher assurance and

security. We will not list them all in this report because they are out of our scope and details are

usually disclosed only under Non-disclosure Agreements (NDAs), but just to give an idea to the

reader of what type of products we mean, we can mention the mobile version of Pike OS high-

assurance kernel supporting TrustZone
65

 and the Secunet mobile solution based on their SINA
66

kernel.

4.2.3 Military research projects

Given the advantages of commercial smartphones and tablets, it is a natural to wonder whether

there is a real possibility to use them in a military setting, more specifically on the battlefield. In

this case, devices are to be used in rough environments, where neither mobile nor Wi-Fi

connectivity may be available or allowed, with opponents that have advanced cyber- or

electronic warfare capabilities and where reliability and confidentiality are critical.

On one hand, most commercial devices are not designed to withstand intense, prolonged and

rough use; it is not possible to interface them with tactical radios or satellite communications;

their cryptographic suites do not support proprietary military grade algorithms; hardware keys

and certificates are under the control of the manufacturer; and they would most likely not be

possible to certify for a high enough assurance level as they are. On the other hand, much of the

smart technology we are used to in our daily lives is not available in a military context, and

could potentially bring huge advantages in many situations. It is not surprisingly then, that there

are various other military research projects looking at how to adapt commercial mobile device

for military needs. Most of these projects are naturally classified and it is not possible to gather

information about them, but for at least two of them there is some documentation that can

reflect what kind of solutions and approaches are being tested.

The first is the Transformative Apps or TransApps project from DARPA
67

. The focus of this

project has been mainly to develop a platform independent military app-store for tactical apps,

and develop a new agile approach to app developing that includes real-time soldiers’ feedback.

However, in order to be able to test this in the field a platform with adequate security was

needed, so COTS devices running Android ―with custom multilayered security‖ have been used

in practice. This refers probably to the Mobile Armour program that contracted a security

enhanced Android to Invincea
68

 in 2012. Details on these security enhancements are

unfortunately not available, but among other things, they tested support of tactical radios as an

alternative to mobile and wireless communication.

65 https://www.sysgo.com/news-events/press/press/details/article/sysgo-demonstrates-pikeosTM-and-androidTM-running-arms-

trustzoneR/
66 https://www.secunet.com/en/topics-solutions/high-security/sina/sina-tablet-s/
67 http://www.darpa.mil/attachments/DrPrabhakar-26Mar14.pdf
68 https://www.invincea.com/2012/06/defense-advanced-research-projects-agency-darpa-awards-invincea-21-4-million-contract-to-

create-secure-android-smartphones-and-tablets-for-u-s-army/

FFI-RAPPORT 16/00319 47

The other project we are aware of is the Dutch PROMISE [52]. PROMISE is an acronym for

PROject Multi-touch Information System Experiment. Similarly to TransApps, this project aims

at delivering a complete solution for tactical systems including a dedicated military app-stores

and specialized apps, based on commercial mobile devices and possibly hardening of available

apps. They also claim that by using MDM solutions and other commercial security measures it

will be possible to certify this solution for ―RESTRICTED‖ level. At the current stage their

platform security relies on a customized Android, where the following security additions were

made to the kernel: PLE (payload encryption solution) VPN for network security; Applocker, to

only allow PROMISE apps on the smart devices; removing all Google API’s and internet

access; unlock patterns as authentication; stringent policies such as screen-lock timeout; and use

of a dedicated app store (open source). However, this means that rooted devices were used,

without any central management solution. These shortcomings are recognized by the project,

and collaboration with manufacturer to implement the required changes in locked devices and

secure MDM solutions are recommended as future work. Use of SIM cards as crypto controllers

is also suggested as a possible solution to the key management problem.

4.3 Discussion

From the overview given in this chapter, it is clear that there are various solutions that can be

adopted when using commercial mobile devices for security sensitive tasks. Each solution can

provide a different level of security at the cost of flexibility, economic impact and amount of

resources needed to deploy and maintain the solution. Table 4.1 summarizes the main aspects of

the different ownership models. It is obvious that the more control the enterprise, in our

example the Department of Defence, has over the device, the more trust we can have that the

security mechanisms are active and working as expected. The reason is that, among other

things, security enforcement can be extended from a single app to more layers of the device, so

that it becomes more and more difficult to circumvent. Naturally, the more aspects of the device

we need to control the more tools, expertise and resources we need, so that costs also will

increase, including the acquisition cost of the devices themselves. At the same time, the more a

solution is integrated with a specific platform, the less flexible it becomes in the event that

devices need to be replaced or updated. In fact, while an app can be adapted relatively quickly

for a new version of the OS or a new device, a customized OS would require much more work.

One other reason why controlling more aspects of the device gives better security is that this

will reduce the number of different actors involved in the mobile platform. As we discussed in

Chapter 2, the more actors in Error! Reference source not found. coincide with the same

entity, the fewer adversaries we need to account for and the better the security mechanisms can

be integrated across different layers of the platform. Table 4.2 shows an example of how the

Department of Defence could assume steadily more roles in the different ownership models and

therefore minimize the potential adversaries. The red boxes indicate actors that cannot be

completely trusted because not directly under our control; dark green boxes are the actors we

can fully trust; while light green boxes those that we can partly trust. We see how in the extreme

case where a customized OS is installed on the devices, with a dedicated app-store, dedicated

 48 FFI-RAPPORT 16/00319

apps and even a dedicated mobile network, what is left as potential untrusted actors besides

external attackers are the manufactures and the users. The reason why the manufacturer box in a

custom solution is colored both red and green is that manufacturers of some components may be

trusted, but it is very difficult to control absolutely all components a mobile device is composed

of.

OVERVIEW OF DIFFERENT OWNERSHIP MODELS

 USER

OWNERSHIP

SHARED

OWNERSHIP

ENTERPRISE

OWNERSHIP

CUSTOM

SOLUTION

TRUST IN

SECURITY

MECHANISMS

Low Low-Medium Medium-High High

SCOPE OF

ENFORCED

SECURITY

Single

Application
Work Partition

Application

Layer And

Platform

Configuration

Kernel And

Above (possibly

pre-boot)

ACQUISITION

COST
Low Low-Medium Medium-High High

MAINTENANCE

COST
Low Low-Medium Medium-High High

PORTABILITY High Medium-Low Medium Low

Table 4.1 Summary of the pros and cons of the different ownership models described in this chapter.

However, threats from external attackers could be mitigated by enforcing strict security policies

that could eliminate many common attack vectors and reduce the attack surface. For instance:

Internet access can be precluded and only proprietary encrypted local networks are used; no

third-party apps are allowed to be installed besides those specifically developed and approved

for the tasks at hand; no integrated services can monitor device activity and send potentially

sensitive data to third-parties; mobile network is most likely not used, or a dedicated one

managed by enterprise itself deployed. This leaves pretty much only supply chain attacks,

insiders and targeted attacks as potential threats. On the other extreme instead, when we have

FFI-RAPPORT 16/00319 49

commercial devices completely owned by the user, any of the actors involved in the mobile

platform can become a potential adversary against which is much more difficult to protect.

Therefore, most common attack vectors which could be excluded in a controlled environment

are still present.

HOW OWNERSHIP MODELS AFFECT SECURITY

 User ownership
Shared

ownership

Enterprise

ownership

Enterprise

ownership +

custom OS

Administrator User Defence/User Defence Defence

Developers Third party
Defence/ Third

party
Defence Defence

Marketplace

provider
Third party

Defence/ Third

party
Defence Defence

Mobile operator Third party Third party
Defence/ Third

party
Defence

Platform

provider
Third party Third party Third party Defence

Manufacturer Third party Third party Third party Third party

Users Civilians
Civilians/Military

personnel

Military

personnel

Military

personnel

Table 4.2 Assuming the Department of Defence as the enterprise that needs to trust the device,
we can see how the more aspects of the platform are under its control, the more
actors coincide with the enterprise itself. This leads to more consistent system and
fewer adversaries to defend against.

Thus, commercial solutions can probably be made good enough for typical office use like e-

mail and access to the enterprise network. In any case situations where sensitive information at a

classification level not higher than RESTRICTED is to be handled, given that a sufficient level

of control can be exercised. Management solutions are therefore necessary in order to correctly

configure and manage the devices so that the possible attack vectors are reduced to a minimum.

 50 FFI-RAPPORT 16/00319

Adequate infrastructure must also be in place, as indicated for instance in the Mobile Security

Reference Architecture by the CIO Council
69

. Approval for even higher classifications however,

requires either high-assurance solutions which are not found in COTS products, or very strict

policies like that all data is to be only stored in volatile memory, external secure elements must

be used for authentication and key storage and only private encrypted local networks are to be

used.

When it comes to tactical use, we have seen how some projects are trying to adapt commercial

technology to more military-specific needs. A common trend seems to be the use of a hardened

version of the Android OS installed on COTS hardware. This choice is quite natural since an

open system is necessary in order to implement the additional capabilities required by a military

tactical setting. However, this reduces significantly some of the benefits of using commercial

products in the first place. Most of the security of COTS devices comes from a tight integration

between hardware capabilities and software mechanisms that may be lost once the original OS

is replaced with a customized one. For instance, in order to install a new OS, one would have to

root the device and unlock the boot-loader, and therefore lose any type of device integrity

verification. As a consequence, most security extensions like hardware-protected keys installed

at manufacturing time, may become unavailable. The new OS would also have to be maintained

by someone else than the device manufacturer, so that new drivers would have to be developed

each time a new model comes to the market, and security of the custom components would

depend entirely on those who developed them, rather than, for instance, Google or Apple, and

the millions of users that test them every day. Resources needed for configuration, provisioning,

and maintenance would also increase. Some of these problems seem to be avoidable in some

cases, as big manufacturers like Samsung appears to be willing to lock the custom platform to

their devices at manufacturing time [53], so that rooting would not be necessary, but they would

not provide updates and service. This would also result in a vendor-lock. Nevertheless, in order

to achieve approval for higher classification levels, such modifications are probably

unavoidable, and it may still be more convenient to use commercial technology as a starting

point rather than designing and developing a completely new device from scratch. Additionally

one of the other main advantages of commercial smart technology are still preserved, namely:

familiar interfaces which could significantly reduce training time and increase effectiveness of

the solutions; faster development of new services; more flexibility; low hardware costs; and

short time-to-market of the latest available technology.

69 https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-Reference-Architecture.pdf

FFI-RAPPORT 16/00319 51

5 Risk mitigations and challenges – scenario

analysis

Despite all the security efforts, it is also clear that there are limitations to what a commercial

mobile device can protect. Unlike stationary equipment, their mobility makes them more

vulnerable to physical attacks as they are easier to be lost, stolen or left unattended. Being

mostly based on technology that is publicly available, they can also be subject to reverse

engineering or other types of analysis that can uncover new vulnerabilities. Besides, it is not

always feasible to adopt the most restrictive and expensive approaches, so that only medium

level security may be available. Therefore, as a further protective measure, it is important to

understand what kind of data it is reasonable to let these devices handle. For instance, if we use

a BYOD approach, where the user owns the device, we may want to be extra careful about

letting sensitive data be stored on the device. Tightly controlled devices used for tactical

purposes may instead be able to handle higher classified data, but only as long as it does not

require long term protection. How to evaluate which information is critical or harmless, how

long it is safe to store it, how to handle it, and so forth, is a case-by-case evaluation and depends

on the specific scenario. Nevertheless, we argue that there are some types of data and activities

that are particularly suited to be handled by mobile devices, without necessarily requiring high-

grade security. There may be also other practical obstacles to the deployment of a solution based

on commercial devices in a military setting, like for instance the difficulty of connecting

systems with different classification levels. Here, we briefly consider a possible scenario to

illustrate these issues and suggest some possible solutions. This chapter is based on a previous

publication [2], but it elaborates the issues further in the context of this report.

5.1 The Common Operational Picture scenario

One thing mobile devices can do pretty well, is data collection. As mentioned earlier, they are in

practice a platform packed with sensors, and the intuitive interfaces let users easily take pictures

and videos, write messages, or record voice, while services in the background can collect a

whole other spectrum of information like location, temperature, radio signals and much more. If

we have a team of soldiers equipped with these devices, the individual observations can be sent

to some central server that aggregates them into what is commonly referred to as a ―Common

Operational Picture‖ (COP) together with other information coming from additional source and

intelligence. The problem is that while the data collected from a single device is not necessarily

sensitive itself, the COP on the server can quickly become classified as it can potentially expose

the overall capabilities, positions and movements of the whole unit. So, although we might

argue that a commercial mobile device can be safely used to report some observations, there are

other practical problems to consider. Figure 5.1 summarizes the scenario.

 52 FFI-RAPPORT 16/00319

Figure 5.1 An approved gateway could allow information exchange between different security
levels. Additionally, mobile devices may be discriminated based on their reliability
and be given access to different information.

5.1.1 Initial risk assessment

First of all, let us give an example of how one may assess the risk of using mobile devices in

this situation. In this case we consider commercial mobile devices ―secure enough‖ for the task

because we record observations that consist mostly of information that would be available to

anyone else in the close vicinity or of public domain, and useful only in the short term. So,

given that the devices can provide a secure communication channel, an attacker would have to

gain physical access and ―steal‖ the information right after it was collected in order to have any

use for it. However, at that point it would be easier to just collect the same information instead

of stealing it, making the security of the device sufficient to deter an attacker, and the potential

loss of information acceptable.

5.1.2 Local aggregation and cryptographic material

While it can be argued that in most cases a single observation is not particularly sensitive, at

least in the short term, if the device stores all observations made over a longer period of time,

this might no longer be the case. For instance, in an aggregated form, the stored observations

could indirectly reveal patterns and trends about the modus operandi of the user, and this could

give an advantage to the attacker also in the near future. Since this information requires long-

term protection, the device protection would become insufficient as more time-consuming

attacks become feasible. In this case the problem could be mitigated simply by requiring that the

observations were wiped away from the device right after they were reported to the server and

the reception was acknowledged. A reliable way of doing so, however, could prove to be tricky

in practice [2]. Similarly, the cryptographic keys used to establish a secure connection to the

GATEWAY

FFI-RAPPORT 16/00319 53

server and possibly authenticate the user, should not be permanently stored on the phone

because of similar security concerns. A possible mitigation we proposed previously [2] is to

adopt smart-cards to provide tamper-proof key storage and strong authentication, which

commercial mobile devices usually lack. We called this approach ephemeral classification to

emphasize the short-lived nature of the sensitive data handled by the mobile device.

5.1.3 Reliability

The reliability of the observations themselves is dependent on the degree of trust we have in the

device and the user. A compromised device can potentially report falsified or forged data. In a

heterogeneous environment we could think of assigning different degrees of trust to different

devices, based on some reliable parameters. Remote attestation could be one, but a simpler one,

although not as reliable, could be the type of authentication. One could assign a higher degree of

trust to those devices using stronger authentication. The underlying idea is that we can think that

someone using a smart-card has also a somewhat more secure and reliable device (and training),

than someone using, for instance, user-name and password or anonymous access. This could be

the case in an emergency or disaster scenarios where military and civilians could cooperate to

gather as much data as possible on the current status of the situation just by downloading an app

and sending in whatever data they can collect [4, 54], but using different authentication methods

based on the equipment they have.

5.1.4 Classified server

As mentioned at the beginning, the COP will most likely have to be stored on a server approved

to handle classified information. Thus, if we wish to use commercial devices not approved to

handle data of at least the same classification level, it may not be possible to connect them

together to report the observations at all. The problem of connecting systems with different

classification levels is a very current one, and not limited to the adoption of COTS products. We

discuss this in detail in [2], but in general there are possibilities to allow a data flow from a

lower classified system to a higher classified one, so that no data can leak from high to low.

This however means also that it is very difficult to send any meaningful response to the device

to confirm the successful reception of an observation, or maybe even a successful

authentication. A gateway that ensures the separation between the security domains, while

offering required functionalities like authentication and error handling, is one of the possible

solutions that are under consideration [55]. Furthermore, there is always the risk that some

malicious agent could find its way to the classified server through a less secure device and do

some damages. Although information would not leak from it, its availability or integrity could

still be compromised.

 54 FFI-RAPPORT 16/00319

5.1.5 Information sharing

Even if we could successfully report all the observations to a classified server from a low

classified device in a secure and reliable way, the resulting aggregated information would still

be classified. Hence, it would not be possible to share it with the soldiers in the field if they

were to use the same mobile devices. As it would not make much sense to have an additional

classified device in the field (which could then be used for everything else instead), a possible

strategy could be to share only parts of the COP with each device/soldier, based on their current

position and information need. This could suffice to guarantee that the loss or compromise of

one or few devices would not compromise the whole team or operation. The level or amount of

information could also depend on the reliability of the device as described in Section 5.1.3. If

more thorough declassification is needed, a manual solution may be adopted. In any case,

additional control mechanisms might have to be in place to avoid that other classified

information could leak from the server together with the declassified data.

5.1.6 Off-line

Although we argued that wiping of sensitive information could be a practical solution to

minimize the risk of information loss, there may be situations when this approach is not

possible, or might have to be delayed. Typically, if we do not have connectivity and cannot

report to the server, we would save the data until we were back on-line. Similarly, if we

received data from the server, we would like to store them for later use and avoid downloading

them again, especially in situation with intermittent connectivity. This means that data cannot be

kept in volatile memory only, and must be written to disk. This poses a significant threat if one

where to lose the device, therefore strong encryption is the most intuitive solution here.

However, full-disk encryption offered by most mobile devices may not work well for this

particular application, and an ad-hoc solution, where keys where generated and stored on the

smart-card, would be more suitable.

5.1.7 Civilian-Military cooperation

In a related scenario where the military may need to coordinate with civilian actors like police,

fire-fighters or others, commercial mobile phones could be an easy and cheap solution to

establish a common data and voice channel without the usual interoperability problems between

proprietary systems. Given that in these situations only sensitive, but not highly classified

information is shared and that most of it is generated on the fly and it is not retrieved from

proprietary classified servers, standard security offered by commercial smartphones may suffice

and we would not have many of the other problems mentioned in the previous sections.

Dedicated servers managed by some trusted third party could provide the necessary

infrastructure to swiftly set-up mission-specific profiles, so that anyone who can download the

app and has a registered identity on the server can take part in the mission even with their

private, but preferably managed, devices.

FFI-RAPPORT 16/00319 55

5.2 Discussion

In order to assess whether a given mobile device provides adequate security in a given scenario,

we need to understand what type of information will be generated, consumed and exchanged in

that situation and what kind of protection it needs. In general, commercial mobile devices can

provide good short term protection, especially if used in a controlled environment, while in the

long term they are more likely to be compromised. Therefore, we believe that they may be a

viable choice in situations where information is not only unclassified, but also classified for a

short-time or only in aggregated form. An example is data collected or generated by a user that

is sensitive only in the current situation and is to be used immediately. Device or data loss

would then not provide any particular advantage to an adversary, as he or she would not have

time to act on it. Also information that may be classified could be fragmented so to still be

useful to the individual users, but not particularly critical if lost. Of course, this is valid given

the assumption that the device is not already compromised so that an attacker has real-time

access to any information on it, but he/she needs to use a certain amount of time and resources

to break its security.

So, even though commercial mobile devices may not provide high security or reliability in all

situations, there are mitigations that could be put in place to allow their use in many interesting

situations where they can provide an increased operational effect. Still, many technical

challenges may arise in their actual integration and deployment in a real military setting, and

possible solutions should be investigated.

6 Conclusions

Manufacturers and platform providers are increasingly interested in making mobile devices

secure, because mobile devices are being used for security critical tasks like payments, remote

management of houses and cars, and as identity tokens, and because corporate customers want

secure and manageable devices to solve the BYOD problem. In addition, in order to appeal also

to governmental and military actors, many mobile platforms seek also to be certified for

standards like FIPS and Common Criteria, as shown by the NSA CSfC list
70

. BlackBerry 10
71

and a new phone born from the collaboration between Sectra and Samsung
72

 seem to have even

been approved for use at RESTRICTED level, proving that commercial smartphones can in fact

be made quite secure. This appears to be in contrast with the continuous stream of news about

the increasing amount of newly discovered vulnerabilities and malicious applications in mobile

devices. However, in this report we have seen how the presence of a vulnerability does not

70 https://www.nsa.gov/ia/programs/csfc_program/component_list.shtml
71 http://press.blackberry.com/press/2013/blackberry-10-receives-nato-approval-for-restricted-communicatio.html
72 http://communications.sectra.com/security-solutions/tigers-r

 56 FFI-RAPPORT 16/00319

directly imply its exploitability, as there are many security mechanisms in place to mitigate or

prevent potential attacks. An analysis of various mobile security reports further confirms that

devices that have not been tampered with and with the recommended security settings enabled

are much less exposed to external threats. Globally, only around 0.1% of such Android devices

have been found to have some kind of potential harmful application on them. The few iOS

infections found on non-jailbroken devices can also be partly blamed on users ignoring security

warnings.

This does not mean that commercial mobile devices should be trusted with handling high-grade

military information out-of the-box. The risk for a new vulnerability being discovered and

exploited despite the existing security is always present, and users can intentionally or by

mistake compromise the security of the device. Management tools can help achieving better

control, but at the cost of the user’s freedom. These tools are also not more secure than the

platform on which they run, so they are rather a way to ease security management and increase

the chance that policies are properly defined and enforced. The common vulnerabilities and

attack vectors we have uncovered in this report are also taken from a consumer market setting,

and while most of them could be avoided by stricter security policies, it is not clear what kind of

new targeted attacks could emerge in a different setting like a military one and whether the same

mitigations would be just as effective. This is however a problem that is common to any

commercial product, not just mobile devices.

Still, by carefully analyzing the type of information one can expect to generate, receive and

consume on these devices, it is possible to design ―ad-hoc‖ solutions that can reduce the risk of

sensitive information loss to an acceptable level. Thus, commercial devices can indeed be

securely used in some scenarios where the benefits brought by their greater flexibility, ease of

use and lower cost, overweigh the potential security risks. Example may be emergency or crisis

situations where civil-military cooperation is needed; simple reporting of individual

observations or non-security critical messages; local communication and information

distribution in a closed network; and so on.

On the other hand, if such devices are to be used in mission critical and rough environments,

where neither mobile nor Wi-Fi connectivity is available, with opponents that have advanced

cyber-attack or electronic warfare capabilities and where reliability and confidentiality are

critical, dedicated solutions would have to be adopted. In Chapter 4.2.3 we discussed this

approach concluding that although we should talk of military devices built on commercial

technology rather COTS products, using commercial technology as a foundation still gives

considerable advantages. Supply-chain attacks, physical access and low reliability should

however still be taken into account when evaluating the actual risk of using these devices.

Concluding, modern mobile devices can realistically be used in some situations where dedicated

military equipment is not a desirable alternative because of the high costs, specialized expertise

or clearance required, or interoperability issues. In these cases, having readily available and easy

to use equipment that allows communicating and sharing information in a somewhat controlled

way, is preferable to not having any means of communication at all or let users find even more

insecure ways of exchanging information. Many projects are already looking at mobile apps as

FFI-RAPPORT 16/00319 57

the new way to bring innovative services to soldiers, and this trend is likely to grow. Thus, we

should rather focus on how to support this development by adapting our security mindset to the

new technology, rather than excluding the technology because it does not fit in our current

security practices.

 58 FFI-RAPPORT 16/00319

Appendix

A Secure mechanisms

Android (5.0-6.0) iOS (9+) BlackBerry 10 Windows 10

INTEGRITY PROTECTION AT BOOT TIME

Android supports verified

boot through the optional

device-mapper-verity

(dm-verity) kernel

feature
73

. The device

block integrity check is

performed by the kernel

comparing the calculated

hash of each block to the

stored reference hash

tree. However, the device

must implement a trusted

boot that verifies the

integrity of the kernel

first [56]. Therefore it

should be supported by a

RSA key burned in the

device.

From [18]: ―Each step

of the startup process

contains components

that are

cryptographically

signed by Apple to

ensure integrity and

that proceed only after

verifying the chain of

trust. This includes the

bootloaders, kernel,

kernel extensions, and

baseband firmware.

At boot time the

signatures of all

loaded components,

included the boot

loader and the OS,

are verified with a

public certificate

installed in the

processor [21].

Windows phone

must comply with

UEFI specifications

and implement a

trusted boot, that

includes a firmware

TPM running in

TrustZone [22]. Most

likely as specified in

[57].

SANDBOXING AND ISOLATION

Android uses a Unix-

style user separation of

processes and file

permissions, where

each application is

given a unique UID

and runs in a separate

process. s. All of the

software above the

From [19]:‖… each

application is

contained within its

own unique directory

on the filesystem and

separation is

maintained by the

XNU Sandbox kernel

extension… for an

―App sandboxing is

primarily enforced

through a combination

of user and group

filesystem

permissions, separate

operating system users

and associated groups

for each app, and PF

Apps are installed in a

―Least Privilege

Chamber‖ (LPC)

allowing them to use

only the capabilities

defined in the

―manifest‖ the app

comes with. New

privileges can be

73 https://source.android.com/security/verifiedboot/index.html

FFI-RAPPORT 16/00319 59

kernel (see Figure xx),

including operating

system libraries,

application

framework,

application runtime,

and all applications

run within the

Application

Sandbox
74

.

application to access

things like media, the

microphone, and the

address book, it must

request the relevant

permissions from the

user.‖

firewall rules‖ [19].

Each app has a unique

group ID, and its

sandbox is defined by

both this ID and the

specific location in

which it runs (work or

personal space).

granted only by

updating the app [22].

SECURE APPLICATION PROVISIONING

Android developers

must register in order

to be able to publish

on the Google Play

store, but no identity

check is performed

besides the credit card

payment. Apps can be

signed with self-signed

certificates, but need

to go through the

Google Bouncer

system where they are

automatically checked

for malware. However,

apps from third party

app-stores can be

installed on the

devices given the user

consent. In this case,

no security evaluation

is guaranteed.

Signatures are used to

make sure that only

apps signed with the

same certificate can

Apple requires

developers to register

to their iOS Developer

Program in order to

issue a certificate that

will be used to sign

their apps. Developers

are to be identified

personally. Apps are

reviewed by Apple to

ensure they operate as

described and don’t

contain obvious bugs

or other problems.

Companies can obtain

special certificates to

create in-house apps

that can be installed

through an MDM,

bypassing the appstore

[18].

Apps not signed by

Apple can be installed

only on jailbroken

devices.

Applications for

BlackBerry 10 are

solely distributed via

BlackBerry World

[19]. Like for Apple,

BlackBerry developers

must enroll and get a

certificate with which

they sign their apps.

BlackBerry states that

apps submitted to be

published in their

appstore will be

―aggressively

scrutinized‖ and give

some requisites they

should satisfy
75

.

Keys, however, are

stored by BlackBerry,

so that it actually has a

copy of the

developers’ keys
76

.

Microsoft requires a

developer account in

order to submit apps

for revision before

publications. From

their guidelines
77

, it

appears that apps are

signed directly by

Microsoft before being

published on the app

store.

74 https://source.android.com/security/overview/kernel-security.html#the-application-sandbox
75 https://developer.blackberry.com/builtforblackberry/documentation/criteria/security.html
76 http://devblog.blackberry.com/2013/08/code-signing-keys-be-gone-welcome-blackberry-id/
77 https://msdn.microsoft.com/library/windows/apps/mt148554.aspx

 60 FFI-RAPPORT 16/00319

communicate and be

updated.

System applications

are signed with

platform keys and are

allowed to run with

system privileges and

share resources [56].

Signatures are also

checked every time an

app or some code is

run [19].

SECURE STORAGE OF SENSITIVE DATA

Android offers full

disk encryption by

default from Android

5.0. It creates a 128-bit

AES master

encryption key the

first time the device is

booted, which is in

turn encrypted with

the user password or

Pin and possibly

signed by a private

key. The resulting

encryption key is then

used by dm-crypt to

encrypt everything that

is written to disk.

The key is protected in

hardware by the TEE

where this is

available
78

.

All iOS devices

contain two unique

AES keys stored in the

dedicated

cryptographic

coprocessor (The

Secure Enclave),

which are used to

generate other

encryption keys, like

the File System Key,

created the first time

the device is booted,

which is used to

decrypt the partition

table and the system

partition at boot time.

In addition a ―per-file‖

key is created through

the Data Protection

API from the user

passcode and used to

encrypt new files as

they are written to disk

[18] [19].

Blackberry encrypts

both work, personal

and media storage data

with a key hierarchy

rooted in a device-key

embedded in the

processor when the

processor is

manufactured. For

each file a random

AES-256 key is

generated, which is

encrypted with the

domain key, in turn

encrypted with the

work or personal

master key, which is

stored in NVRAM and

encrypted with the

system master key

stored in the replay

protected memory

block on the device,

which is encrypted

with the device-key

[20].

Windows uses

BitLocker to provide

full-disk encryption,

backed-up by a

firmware TPM

implemented in

TrustZone. Keys are

stored in the device

eFuses
79

. Company

data are additionally

encrypted using

Enterprise Data

Protection (EDP) [22].

78 https://source.android.com/security/encryption/index.html
79 https://businessmobilitycenter.microsoft.com/en/webinars/Pages/Webinar-Security-for-Lumia-with-Windows-Phone-8.aspx

FFI-RAPPORT 16/00319 61

CENTRALIZED AND FREQUENT SECURITY UPDATES

Google maintains the

Android code base and

releases security

updates, but each

device manufacturer

running a customized

Android must release

their own versions.

Google promised

however to increase

the frequency of the

updates to once a

month
80

, but device

manufacturer and

network operators will

have to follow up.

Apple has full control

on both device

firmware and

software, so they can

push any update on all

Apple devices

whenever needed and

centrally. They can

also prevent

downgrades that can

be used to exploit old

vulnerabilities by

using a ―System

Authorization

Software‖ [18].

BlackBerry has also

control over all

manufacturing process

from hardware to

applications and can

centrally update all its

devices.

Although originally

shipped only on

Nokia’s phones,

Windows mobile

opened to different

OEM manufacturers

last year
81

, potentially

creating the same

fragmentation problem

Android has.

However, with

Windows 10 mobile,

they intend to

centralize the

distribution of security

updates despite

different manufacturer

and carriers
82

.

BYOD AND MDM

Android support for

MDM software has

been usually limited to

enforcing password

policy, device wipe

and encryption until

the introduction of

Android for Work

with the Lollipop

edition. Now a device

can be partitioned into

a personal and work

space, where the work

space owner has a

much wider range of

security policies they

can create [15].

Apple gives also the

possibility to configure

a device for different

scenarios like User-

owned, Organization

owned personally

enabled, and

Organization owned

non-personalized. It

offers wide support to

MDM software and

integration with Apple

services [58].

BlackBerry Balance is

the BlackBerry BYOD

solution. It allows

partitioning the device

in a personal and work

space, each encrypted

with its own key.

Again, the device can

be configured for three

different situations:

Work and personal –

Corporate (BYOD),

Work and personal –

Regulated, Work

space only. [21]

Windows 10 offers

also separation

between personal and

work data and apps

with separate

encryption and

dedicated app stores

for each. MDM

support is also quite

extensive and allow

for wide range of

policy options [22].

80 http://officialandroid.blogspot.no/2015/08/an-update-to-nexus-devices.html
81 http://www.engadget.com/2014/02/23/microsoft-lg-lenovo-windows-phone/?ncid=rss_truncated&utm_campaign=sf
82 http://www.cnet.com/news/microsoft-to-control-software-updates-for-windows-10-mobile/

 62 FFI-RAPPORT 16/00319

B Abbreviations

AOSP Android Open Source Project
NFC

Near Field Communication

API A Platform Interface
NS

Non-Secure

BYOD Bring Your Own Device
NSA

National Security Agency

C2IS
Command and Control Information
System

NX
Non eXecutable

CIO Chief Information Officers
OEM

Original Equipment Manufacturer

COP Common Operational Picture
OS

Operating System

COTS Commercial off the Shelf
OWASP Open Web Application Security

Project

CSfC Commercial Solutions for Classified
PHA

Potential Harmful Application

CTS Compatibility Test Suite
PKI

Public Key Infrastructure

CVE
Common Vulnerabilities and
Exposures

PLE
Payload Encryption

CVSS
Common Vulnerability Scoring
System

RTOS
Real-time Operating System

DAC Discrete Access Control
SELinux

Security Enhanced Linux

DISA
Defence Information System
Agency

SIM
Subscriber Identity Module

DMCC-
S

Defense Mobile Classified
Capability-Secret

SIPRNet Secret Internet Protocol Router
Network

DRM Digital Rights Management
SMS

Short Message Service

EAL Evaluation Assurance Level
SoC

System on Chip

EMM Enterprise Mobile Management
SQL

Structured Query Language

FIPS
Federal Information Processing
Standards

SSL
Secure Socket Layer

FFI-RAPPORT 16/00319 63

HTTPS
Hyper Text Transfer Protocol
Secure

TEE
Trusted Execution Environment

IPC Inter-process Communication
TLS

Transport Layer Security

IT Information Technology
TPM

Trusted Platform Module

LTE Long Term Evolution
UEFI Unified Extensible Firmware

Interface

MAC Mandatory Access Control
USB

Universal Serial Bus

MAM Mobile Application Management
VOIP

Voice Over IP

MDM Mobile Device Management
VPN

Virtual Private Network

MIM Mobile Information Management
XML

eXtensible Markup Language

MMS Multimedia Messaging Service
XN

eXecutable Never

NDA Non-Disclosure Agreement

References

[1] E. Demko, "Commercial-off-the shelf (COTS): a challenge to military equipment

reliability," in Proceedings of RAMS'96 - The Annual Reliability and Maintainability

Symposium, 1996.

[2] F. Mancini and A. Fongen, "Ephemeral classification of mobile terminals," in IMCIS'15 -

International Conference on Military Communications and Information Systems, Cracow,

2015.

[3] J. H. Roa, D. E. Aubert, E. N. Eriksen, K. R. Karud, F. T. Johnsen, T. H. Bloebaum, M. R.

Brannsten og B. K. Reitan, «KingsEye - plattformuavhengig situasjonsoversikt- FFI notat

2015/01718,» Norwegian Defence Research Establishment (FFI), Kjeller, 2015.

[4] J. Hagen and H. Hafnor, "Med krisekommunikasjon i lomma - FFI report 2015/0196,"

 64 FFI-RAPPORT 16/00319

Norwegian Defence Research Establishment, Kjeller, 2105.

[5] B. K. Reitan, A.-K. Elstad and C. J. Gran, "En ny klasse kommando og kontroll

informasjonssystemer - eksperimenter med smarttelefoner og samhandling - FFI report

2015/02298," Norwegian Defence Research Establishment (FFI), Kjeller, 2015.

[6] K. Nomeland, "Teknisk målarkitektur og veikart for taktisk radio i Forsvaret,"

FLO/IKT/Nettverksavdeling/Radioseksjon, Kolsås, 2015.

[7] Forsvarets sikkerhetstjenesste, «Sikkerhetskonsept for et nettverksbasert forsvar,»

Forsvaret, 2011.

[8] N. A. Nordbotten, F. Mancini, B. H. Farsund, R. Haakseth, A. M. Hegland og F. Lillevold,

«Information sharing across security domains,» Norwegian Defence Research

Establishment (FFI), Kjeller, NO, 2015.

[9] N. Asokan, L. Davi, A. Dmitrienko, S. Heuser, K. Kostiainen, E. Reshetova and A.-R.

Sadeghi, Mobile Platform Security, Morgan & Claypool Publishers, 2014.

[10] ETSI, TS 131 111 - V11.5.0 - Digital cellular telecommunications system (Phase 2+);

Universal Mobile Telecommunications System (UMTS); LTE; Universal Subscriber Identity

Module (USIM) Application Toolkit (USAT) (3GPP TS 31.111 version 11.5.0 Release 11),

CEDEX: ETSI, 2013.

[11] ARM, "ARM Security Technology - Building a Secure System using TrustZone®

Technology," April 2009. [Online]. Available:

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-

009492C_trustzone_security_whitepaper.pdf. [Accessed 16 December 2015].

[12] F. Mancini, "Hardware-based trust and integrity: Trusted Platform Module (TPM) and

Trusted Execution Environment (TEE) – possible building blocks for more secure

systems?," FFI, Kjeller, 2014.

[13] T. Alves and D. Felton, "TrustZone: Integrated Hardware and Software Security - Enabling

Trusted Computing in Embedded Systems," Information Quarterly, vol. 3, no. 4, pp. 18-24,

2004.

[14] S. Smalley and R. Craig, "Security Enhanced (SE) Android: Bringing Flexible MAC to

Android," in NDSS '13 - 20th Annual Network and Distributed System Security Symposium,

San Diego, CA United States, 2013.

FFI-RAPPORT 16/00319 65

[15] Google, "Android for Work Security white paper," May 2015. [Online]. Available:

https://static.googleusercontent.com/media/www.google.com/no/NO/work/android/file

s/android-for-work-security-white-paper.pdf. [Accessed 15 December 2015].

[16] Samusng Electronics Co., Ltd, "White Paper: An Overview of the Samsung KNOXTM

Platform," September 2015. [Online]. Available:

https://www.samsungknox.com/en/system/files/whitepaper/files/An%20Overview%20of

%20the%20Samsung%20KNOX%20Platform_V1.12_0.pdf. [Accessed December 2015].

[17] Samsung Electronics Co., Ltd. , "In-Depth Look at Capabilities: Samsung KNOX and

Android for Work," 2015. [Online]. Available:

https://www.samsungknox.com/en/system/files/whitepaper/files/Samsung%20KNOX%2

0and%20Android%20for%20Work_2.pdf. [Accessed Decemeber 2015].

[18] Apple, "iOS Security - iOS 9.0 or later," September 2015. [Online]. Available:

https://www.apple.com/business/docs/iOS_Security_Guide.pdf. [Accessed 14 December

2015].

[19] D. Chell, T. Erasmus, S. Colley and O. Whitehouse, The Mobile Application Hacker's

Handbook, John Wiley & Sons, 2015.

[20] BlackBerry, "BlackBerry Enterprise Service 10 - Security Technical Overview - BlackBerry

Device Service Solution Version: 10.2," 10 September 2014. [Online]. Available:

https://help.blackberry.com/nb/bes10/10.2/sto-

pdf/BES10_v10.2_BDS_Security_Technical_Overview_en.pdf. [Accessed 15 December

2105].

[21] BlackBerry, "Security Overview - BlackBerry 10," September 2015. [Online]. Available:

https://help.blackberry.com/en/blackberry-security-overview/latest/blackberry-security-

overview-pdf/BlackBerry-10-latest-Security-Overview-en.pdf. [Accessed 14 December

2015].

[22] A. Meeus, "Windows 10 for mobile devices Secure by design," in Microsoft Ignite,

Chicago, 2015.

[23] TCG, "TCG Specification - TPM 2.0 Mobile Reference Architecture. Level 00 Revision 142,"

16 December 2014. [Online]. [Accessed 16 December 2015].

[24] R. Kissel, «NISTIR 7298 Revision 2 - Glossary of Key Information Security Terms,» NIST,

Gaithersburg, MD, US, 2013.

 66 FFI-RAPPORT 16/00319

[25] M. Howard, J. Pincus og J. M. Wing, «Measuring Relative Attack Surfaces,» i Computer

Security in the 21st Centur, Boston, MA, US, 2005.

[26] NSA, "New Smartphones and the Risk Picture," April 2012. [Online]. Available:

https://www.nsa.gov/ia/_files/factsheets/mobilerisks.pdf. [Accessed January 2016].

[27] Google Inc., "Google Report - Android Security 2014 Year in Review," 2015. [Online].

Available:

https://static.googleusercontent.com/media/source.android.com/en//devices/tech/secu

rity/reports/Google_Android_Security_2014_Report_Final.pdf. [Accessed Januar 2016].

[28] R.-P. Weinmann, "Baseband Attacks: Remote Exploitation of Memory Corruptions in

CellularProtocol Stacks," in WOOT'12 - The 6th USENIX Workshop on Offensive

Technologies, Bellevue, WA, 2012.

[29] F-Secure Labs, "MOBILE THREAT REPORT Q1 2014," April 2014. [Online]. Available:

https://www.f-

secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf.

[Accessed January 2016].

[30] Symantec, "Internet security threat report 2013," April 2013. [Online]. Available:

http://www.symantec.com/content/en/us/enterprise/other_resources/b-

istr_main_report_v18_2012_21291018.en-us.pdf. [Accessed January 2016].

[31] 360 Security, "An overview of malware and vulnerability landscape in 2nd quarter 2015,"

28 July 2015. [Online]. Available:

file:///C:/Users/fma/Dropbox/mobile%20security%20docs/Q2%202015%20Android%20

Malware%20and%20Vulnerability%20Report%20-.html. [Accessed Januar 2016].

[32] Kaspersky, "Kaspersky Security Bullettin 2014," 2015. [Online]. Available:

https://securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-EN.pdf. [Accessed

January 2016].

[33] Lookout, "2014 Mobile Threat Report," 2015. [Online]. Available:

https://www.lookout.com/img/images/Consumer_Threat_Report_Final_ENGLISH_1.14.p

df. [Accessed Januar 2016].

[34] FireEye Inc., "OUT OF POCKET: A Comprehensive Mobile Threat Assessment of 7 Million

iOS and Android Apps," February 2015. [Online]. Available:

https://www2.fireeye.com/rs/fireye/images/rpt-mobile-threat-assessment.pdf.

[Accessed Januar 2016].

FFI-RAPPORT 16/00319 67

[35] Alcatel-Lucent, "Mobile malware: A network view," in Black Hat Mobile Security Summit ,

London, 2015.

[36] T. Müller and M. Spreitzenbarth, "FROST - Forensic Recovery of Scrambled Telephones,"

in ACNS 2013 - 11th International Conference on Applied Cryptography and Network

Security, Banff, AB, Canada, 2013.

[37] T. Roth, "Next generation mobile rootkits," in Hack in Paris 2013, Paris, FR, 2013.

[38] D. Shen, "Attacking your “Trusted Core” - Exploiting TrustZone on Android," in Black Hat

USA 15, Las Vegas, NV, USA, 2015.

[39] Y. Zhang, Z. Chen, H. Xue and T. Wei, "Fingerprints On Mobile Devices: Abusing and

Leaking," in Black Hat 15 USA, Las Vegas, NV, USA, 2015.

[40] Lookout, "Enterprise Mobile Threat Report - The State of iOS and Android Security

Threats to Enterprise Mobility," 2015. [Online]. Available:

https://www.lookout.com/docs/us/Enterprise_MTR.pdf. [Accessed Januar 2016].

[41] C. Xiao, "WIRELURKER: A New Era in iOS and OS X Malware," November 2014. [Online].

Available: https://www.paloaltonetworks.com/content/dam/paloaltonetworks-

com/en_US/assets/pdf/reports/Unit_42/unit42-wirelurker.pdf. [Accessed January 2016].

[42] T. Wei, M. Zheng, H. Xue and D. Song, "Apple Without A Shell – Ios Under Targeted

Attack," in Virus Bullettin Conference, Seattle, USA, 2014.

[43] B. Lau, Y. Jang og C. Song, «Mactans: Injecting Malware into iOS Devices via Malicious

Chargers,» i BalckHat USA 2013, Las Vegas, NV, US, 2013.

[44] A. Antukh, "BlackBerry 10 Research Primer - “Dissecting Blackberry 10 – An initial

analysis”," SEC Consult Vulnerability Lab, Vienna, 2013.

[45] D. M. Gomez and A. Davis, "BlackBerry PlayBook Security: Part one," NGS Secure , 2011.

[46] G. Jones, "BlackBerry PlayBook Security: Part two," NGS Secure, 2011.

[47] Z. Lanier and B. Nell, "No Apologies Required: Deconstructing Blackberry 10," in

CanSecWest 2014, Vancouver, 2014.

[48] R.-P. Weinmann, "BlackBerryOS 10 from a security perspective," in Black Hat 2013 USA,

Las Vegas., 2013.

 68 FFI-RAPPORT 16/00319

[49] T. Cosgrove, R. Smith, C. Silva, J. Girard and B. Taylor, Magic Quadrant for Enterprise

Mobility Management Suites, Gartner, 2015.

[50] D. Brodie and M. Shaulov, "Practical Attacks against Mobile Device Management (MDM),"

in Black Hat 2013 Europe, Amsterdam, NL, 2013.

[51] T. Collyer, "Android, BYOD, and AirWatch MDM," SANS Institute, 2014.

[52] TNO, "Promise 1.0 final report," Defence Materiel Organisation - Ministry of the Defence,

The Netherlands, 2015.

[53] F. T. Johnsen, "Reiserapport: Purple Nectar 2015," Norwegian Defence Research

Establishment (FFI), Kjeller, NO, 2016.

[54] J. Hagen, H. Hafnor, F. Mancini, A.-K. Elstad, B. Reitan, A.-L. Bjørnstad and C. Gran, "App

teknologi som krisekommunikasjonsverktøy - FFI notat 2015/0280 Untatt Offentlighet,"

Norwegian Defence Research Establishment (FFI), Kjeller, 2015.

[55] N. A. Nordbotten, F. Mancini, B. H. Farsund, R. Haakseth, A. M. Hegland and F. Lillevold,

"Information sharing across security domains - FFI-report 2015/00456," Norwegian

Defence Research Establishment (FFI), Kjeller, 2015.

[56] N. Elenkov, Android Security Internals - An In-Depth Guide to Android’s Security

Architecture, San Francisco: No Starch Press, Inc., 2015.

[57] TCG, "TCG PC Client Platform Firmware Profile Specification - Family “2.0”, Level 00

Revision 00.21," 27 August 2015. [Online]. Available:

https://www.trustedcomputinggroup.org/files/resource_files/71610DAD-1A4B-B294-

D09C51583DB1A501/PC%20ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v21

_Public%20Review.pdf. [Accessed 14 December 2015].

[58] Apple, "iOS Deployment Overview for Enterprise," September 2015. [Online]. Available:

https://www.apple.com/business/docs/iOS_Enterprise_Deployment_Overview.pdf.

[Accessed 15 December 2015].

[59] NIST, «FIPS PUB 200 - Minimum Security Requirements for Federal Information and

Information Systems,» National Institute of Standards and Technology , Gaithersburg,

MD, US, 2006.

Administrative Staff Strategy and Planning

Defence Industrial
Strategy

Ministry of Defence

FFI´s Board

Analysis Maritime SystemsCyber Systems and
Electronic Warfare

Air and
Space SystemsLand Systems Protection and

Societal Security

Defence Research
Review Board

Internal Audit

Director General

About FFI
The Norwegian Defence Research Establishment (FFI)
was founded 11th of April 1946. It is organised as an
administrative agency subordinate to the Ministry of
Defence.

FFI’s mIssIon
FFI is the prime institution responsible for defence
related research in Norway. Its principal mission is to
carry out research and development to meet the require-
ments of the Armed Forces. FFI has the role of chief
adviser to the political and military leadership. In
particular, the institute shall focus on aspects of the
development in science and technology that can
influence our security policy or defence planning.

FFI’s vIsIon
FFI turns knowledge and ideas into an efficient defence.

FFI’s chArActerIstIcs
Creative, daring, broad-minded and responsible.

om FFI
Forsvarets forskningsinstitutt ble etablert 11. april 1946.
Instituttet er organisert som et forvaltnings organ med
særskilte fullmakter underlagt Forsvarsdepartementet.

FFIs Formål
Forsvarets forskningsinstitutt er Forsvarets sentrale
forskningsinstitusjon og har som formål å drive forskning
og utvikling for Forsvarets behov. Videre er FFI rådgiver
overfor Forsvarets strategiske ledelse. Spesielt skal
instituttet følge opp trekk ved vitenskapelig og
militærteknisk utvikling som kan påvirke forutsetningene
for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs vIsjon
FFI gjør kunnskap og ideer til et effektivt forsvar.

FFIs verdIer
Skapende, drivende, vidsynt og ansvarlig.

FFI’s organisation

Forsvarets forskningsinstitutt
Postboks 25
2027 Kjeller

Besøksadresse:
Instituttveien 20
2007 Kjeller

Telefon: 63 80 70 00
Telefaks: 63 80 71 15
Epost: ffi@ffi.no

Norwegian Defence Research Establishment (FFI)
P.O. Box 25
NO-2027 Kjeller

Office address:
Instituttveien 20
N-2007 Kjeller

Telephone: +47 63 80 70 00
Telefax: +47 63 80 71 15
Email: ffi@ffi.no

	Tom side

