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English summary

Mobile Ad hoc NETworks (MANETS) have gained significant popularity through the last decade,
not least due to the emergence of low cost technology and the pervasiveness of the IP protocol stack.
The FFI-project 1175, ”Gjennomgéende kommunikasjon for operative enheter”, is chartered with
researching MANETS for use by the Norwegian operational military forces.

Self-organizing and self-healing wireless multihop networks, MANETSs are aimed at supporting
tactical domain communications with a high grade of mobility. These networks will interconnect
with other networks in the Networking and Information Infrastructure (NII) using IP as the common

connecting protocol.

The Transmission Control Protocol (TCP) is “’the protocol that saved the Internet”, most importantly
because of its congestion control mechanism. It is a vital building stone in IP-based networks, but it
faces serious challenges when used in MANETS, since MANETS are challenged with interference
and high grade of mobility, from which wired networks are spared. Thus, to employ MANETSs
interconnected in the defense communication infrastructure, it is important to study the problems and
the current state of the art of TCP in MANETS.

This report is aimed at introducing readers to the TCP protocol, describing the challenges that TCP
faces in MANETS, and give an overview of ongoing research to adapt TCP to MANETs.
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Sammendrag

Interessen for Mobile ad hoc nettverk (MANET) har gkt betraktelig det siste tiaret, ikke minst
pa grunn av fremveksten av lavkost-teknologi og den store utbredelsen av IP-protokollstakken.
FFI-prosjekt 1175, ”Gjennomgaende kommunikasjon for operative enheter”, har i oppdrag a gjgre

forskning pdA MANET for bruk av Norges operative militere styrker.

MANET, selvorganiserende og selvhelende tradlgse multihopp nettverk, er rettet mot & stgtte kom-
munikasjon i det taktiske domenet med en hgy grad av mobilitet. Disse nettverkene vil vare koblet

sammen med andre nettverk i NII med bruk av IP som felles kommunikasjonsprotokoll.

TCP er kjent som “protokollen som reddet Internett”, spesielt pa grunn av dens mekanisme for
metningskontroll. Den er en viktig byggestein i [P-baserte nettverk, men den star overfor alvorlige
utfordringer nar den brukes i MANET, ettersom MANET har utfordringer med forstyrrelser og
hgy grad av mobilitet, som kablede nettverk er spart for. Derfor, for & benytte MANET som en
integrert del av Forsvarets kommunikasjonsinfrastruktur, er det viktig & studere utfordringene TCP
har i MANET, og hva som er state-of-the-art pA TCP for bruk i MANET.

Denne rapporten har som mal a gi lesere en introduksjon til TCP protokollen, a beskrive de utfordrin-
gene som TCP star overfor i MANET og gi en oversikt over pagéende forskning for a tilpasse TCP
til MANET.
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1 Introduction

Military communication on a tactical level is becoming IP-based. This allows the employment
of one common communication infrastructure for multiple systems, enabling the network-based
defense paradigm. With IP-based connectivity comes also a desire to interconnect wired and wireless
communications systems. There is an expectation that services used in wired networks today also

will be available in the wireless domain.

In the wireless domain, cell-phone technology has shown users that [P-based web communication
is feasible. However, this communication technology requires infrastructure in the form of a high-
capacity backbone! network and one hop wireless communication between the client terminal and

base stations that connect to the backbone.

Current wireless communication in the military tactical domain consists mainly of point-to-point
radio links and one-hop broadcast voice/Situational Awareness (SA) data. However, there is a
lot of ongoing work focusing on interconnecting the various radio systems using Mobile Ad hoc
NETwork (MANET) technology, to create heterogeneous MANETs. MANETS are self-configuring
infrastructure-less networks that adapt dynamically to changing environments. In contrast to cell-
phone technology, MANETS are able to support multi-hop wireless communication over a shared
medium. However, the capacity and performance of MANETS are much lower, compared to cell-
phone networks, and informing future users and service developers on the limitations as well as the

advantages of this technology is essential for proliferation of the MANET technology.

While MANET technology is very suitable for tactical communication, many IP-based protocols are
not directly usable in MANETS. These protocols were developed in a strictly wire-based network
domain, where attributes like interference and packet loss are less dominant and better controlled
than in wireless multi-hop networks. For instance, queue loss is the sole contributor to packet loss,
while medium-based bit errors are but non-existent. In MANETS, the Bit Error Rate (BER) is much
higher than in wired networks (several orders of magnitude). Protocols that anticipate the cause of
packet loss to be caused by queue tail drop may make the wrong assumption in MANETS, reacting

badly in this situation.

The Transmission Control Protocol (TCP) has been, and continues to be, an essential protocol for
Internet communication. Without its rate control, traffic congestion would have rendered the Internet
useless. However, TCP makes several assumptions about the network. It assumes that network
congestion, and not transmission errors, causes packet loss. It also assumes that the Round Trip
Time (RTT) is relatively constant (little jitter) and that rerouting happens very quickly. None of these
assumptions are easily satisfied in MANETS, which results in TCP having substantial problems when

employed in such environments.

TCP has been improved several times after its first version in 1981. In recent years, the focus has

mainly been on optimizations due to the ever-increasing link capacity of wired networks. These

' A backbone network with either wired links or dedicated point-to-point radio links.
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proposals are not directly useful for the employment of TCP in MANETSs. However, there has become
more interest during the last decade in improving TCP for communication in multi-hop wireless
networks, although the main TCP research activity still has been focused at High Performance
Computing (HPC). The increased research effort on TCP in MANETS bodes well for a future where
TCP and its excellent qualities is part of extending wire-based services into the wireless multi-hop

domain.

This report focuses on the evolution and adaption of the TCP protocol. There are other protocols that
aim to replace TCP entirely, for instance through implementing flow and congestion control on top
of the User Datagram Protocol (UDP). These solutions are beyond the scope of this report.

The rest of the report is structured in the following way: In Chapter 2, TCP’s origin and historical
development in the wired domain is described. Chapter 3 presents the challenges of applying TCP
to wireless multi-hop networks. An overview of proposed solutions for adapting TCP for use in

MANETs is next presented in Chapter 4, and the report is concluded in Chapter 5.

2 TCP in wired networks
2.1 Introduction

TCP is a transport protocol that provides a number of services for higher layers in the OSI network
architecture stack [1]. It guarantees that a stream of bytes sent from the sender program on one
computer is delivered reliably and in the same order to the receiver program on the other computer.
The counterpart to the reliable TCP service is the User Datagram Protocol (UDP), which provides a
datagram service where latency is reduced at the cost of data delivery reliability. A few key features
set TCP apart from UDP:

Ordered data transfer.

e Retransmission of lost packets.

Error-free data transfer.

Flow control.

Congestion control.

This report gives only a brief introduction to the functions of the TCP protocol, to give the reader
an understanding of the basic functions in the TCP protocol, and the differences between different
TCP variants. If more information is desired, this can be acquired through several sources, including
the many RFCs (introduced in Chapter 2.3.1) that describe the functions of TCP formally, three
innovative books covering TCP/IP by W. Richard Stevens [2, 3, 4], and also more easily digestive

works such as P. D. Amer’s presentation [5] or even Wikipedia.
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2.2 Brief description of TCP

Network function: TCP is a transport layer protocol which hides the rigid IP layer restrictions of
maximum packet length and potential packet delivery problems, and deliver a byte stream service
where the application knows that all bytes sent to TCP will be delivered at the destination application
in the correct order without packet loss. TCP handles retransmission of lost data, rearranges of

out-of-order data, and helps minimize network congestion.

A vast number of applications utilize TCP. Among the most used are the World Wide Web (WWW),
E-mail, File Transfer Protocol, Secure Shell, Peer-to-Peer (P2P)? file sharing. Even some streaming
applications use TCP as the transmission protocol. TCP focuses on reliable delivery, and this may
increase the delivery delay, since it must wait for retransmissions of lost messages or reorder out-of-
order-messages. Thus, it is less suitable for traffic that requires low delay, e.g. interactive streaming,

video conferencing and Voice over IP (VoIP).

The reliability of TCP depends on acknowledgment packets sent from the destination to the source,
to confirm to the source that the destination has received the data. The source keeps track of each
sent packet, and maintains a window for packets for which it awaits Acknowledgments (ACKs). A
new packet is not sent until a slot in this window is available. In addition, a timer is kept from the
time the packet was sent, in case a packet disappears or is corrupted. The packet is retransmitted if

the timer expires.

Byte
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Figure 2.1 The TCP Packet Header.

TCP segment structure: TCP receives data from a data stream (from the application). The data
are segmented into chunks and with an added TCP header, this accounts for a TCP segment. This
TCP segment is transmitted over the network wrapped in an Internet Protocol (IP) datagram. The

TCP header can be seen in Figure 2.1 and consists of the following fields:

Source port (16 bits) is the sender’s port.
Destination port (16 bits) is the receiver’s port.

*Due to fairness issues between multiple TCP flows, P2P solutions are currently researching better suited transport
protocols, e.g. UDP with flow control.

FFl-rapport 2012/01289 9



Sequence number (32 bits) represents either (if the SYN bit is set) the initial sequence number?,
or (if the SYN bit is not set) the sequence number of the current packet. In the latter case, the
sequence number of the first data byte will then be the initial sequence number plus one. If the
SYN bit is not set, the sequence number is the position of the first byte of the current packet in
the byte stream session plus the initial sequence number.

Acknowledgment number (32 bits) represents either (if the ACK bit is set) the sequence number
of the next expected byte to be received from the sender (defined by the receiver)?, or (if the
ACK bit is not set — only occurs at the beginning of the communication) the acknowledgment
of the other end’s initial sequence number itself.

Data offset (4 bits) specifies the size of the TCP header in the number of 32 bit words, implicitly
stating where in the TCP segment the data begins (the offset of the data in the TCP segment).

Reserved (3 bits) is for future use (set to zero).

NS (1 bit) Explicit Congestion Notification (ECN)-nonce concealment protection [6].

CWR (1 bit) If set, the Congestion Window Reduced (CWR) flag notifies the receiver that the
sender has received an ECE flag and has reduced the congestion window as a result. [7].

ECE (1 bit) When the SYN bit is set, ECN-Echo (ECE) indicates whether the TCP peer is ECN
capable. If the SYN bit is not set, a set ECE field indicates that a packet with the Congestion
Experienced flag [7] in the IP header set is received during normal transmission.

URG (1 bit) indicates that the Urgent pointer field is valid.

ACK (1 bit) indicates that the Acknowledgment field is valid. (Should be set in all packets after the
initial SYN packet sent by the client.)

PSH (1 bit) If set, requests the receiver to push the buffered data to the receiving application.

RST (1 bit) Connection reset.

SYN (1 bit) If set means that the sequence numbers should be synchronized between the sender and
receiver. It is only set in the first packet sent from each end. Note that other flags’ meaning
depends on whether the SYN bit is set.

FIN (1 bit) If set means that the sender has finished sending data, and there will be no more data
from the sender.

Window size (16 bits) is set by the receiver. Announces the maximum number of bytes (beyond
the current ACK-ed sequence number) that the receiver is currently willing to receive.

Checksum (16 bits) is used for controlling if the header and data contain errors.

Urgent pointer (16 bits) represents an offset from the sequence number indicating the last urgent
data byte, if the URG bit is set.

Options (0-320 bits) — Can contain various options, and a padding to ensure the field’s length is
divisible on 32 bit. For more information, refer to the following RFCs: [8, 9, 10].

The protocol operation of TCP can be seen as consisting of three phases. First, connections are

established in a multi-step handshake process (connection establishment). Second, the data transfer

3The initial sequence number is randomly selected to avoid connection hijacking. Without randomly selecting the
initial sequence number, this number would be easily guessable, allowing an attacker to blindly send a sequence of packets
that the receiver would believe to come from a different IP address.

“The receiver thus acknowledges the receipt of all prior bytes (if any).
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phase is entered. After the completion of the data transmission, the third phase is connection

termination where the established virtual circuits are closed and all allocated resources are released.

Timeout after two maximum
segment lifetimes (2*MSL)

[
CLOSED

Passive open Close Active open/SYN

Timeout /RST

LISTEN

Send /SYN

SYN/SYN + ACK
SYN RCVD SYN SENT
ACK )WCK/TK
ACK
Close/FIN ESTABLISHED
‘W W
FIN WAIT-1 ACK CLOSE WAIT
- _\ GoseFIN
FIN +
ACK/ACK
CLOSING
FIN WAIT-2 LAST.ACK
ACK
FIN/ACK TIME WAIT

Figure 2.2 The TCP State-Transition Diagram, from [8].

A TCP connection is managed by an operating system through a programming interface, the Internet
socket, which represents the local end-point for communications. The TCP connection has a relatively
complex state machine (Figure 2.2). During the lifetime of a TCP connection it undergoes a series of
state changes.

CLOSED The connection is closed.

LISTENING Waiting for a connection request from any remote client (only applies for server
nodes).

SYN-SENT Waiting for the remote peer to send a TCP segment with the Synchronise (SYN) and
ACK flags set. (usually set by TCP clients)

SYN-RECEIVED Waiting for the remote peer to send an acknowledgment after having sent back a
connection acknowledgment to the remote peer. (usually set by TCP servers)

ESTABLISHED The port is ready to receive/send data from/to the remote peer.

FIN-WAIT-1 Waiting for a connection termination request from the remote TCP, or an acknowledg-
ment of the connection termination request previously sent.

FIN-WAIT-2 Waiting for the server’s Finish (FIN) segment. This indicates that the server’s applic-
ation process is ready to close and the server is ready to initiate its side of the connection

FFl-rapport 2012/01289 11



termination.

CLOSE-WAIT Waiting for a connection termination request from the local user.

LAST-ACK The server is in the process of sending its own FIN segment. The server’s application
process is ready to close and the server is ready to initiate its side of the connection termination.

TIME-WAIT Waiting for enough time to pass to be sure the remote peer received the acknow-
ledgment of its connection termination request. According to [8] a connection can stay in

TIME-WAIT for a maximum of four minutes, known as a Maximum Segment Lifetime (MSL).

Connection establishment: TCP uses a three-way handshake to establish a connection. The server
must first bind to a port to open it for connections, before a client attempts to connect to it (called a
passive open). Once the passive open is established, a client may initiate an active open, beginning

the three-way handshake to establish a connection:

1. SYN: The active open is performed by the client sending a SYN to the server. It sets the
segment’s sequence number to a random value A.

2. SYN-ACK: In response, the server replies with a SYN-ACK. The acknowledgment number is
set to one more than the received sequence number (A + 1). In addition, the server chooses
a sequence number for communication in the opposite direction. This sequence number is
another random number, B.

3. ACK: The client sends an ACK to the server. The sequence number is set to the received ACK
value (A + 1), and the acknowledgement number is set to one more than the received sequence
number, B + 1.

At this point, both the client and server have received an acknowledgment of the connection and the

connection is established.

Flow control: TCP uses flow control to avoid having the sender send data too fast for the TCP
receiver to receive and process it reliably. The flow control is managed using a sliding window
mechanism. In the receive window field of each TCP segment, the receiver announces the amount of
additional received data (in bytes) that it is willing to buffer for the connection. The sending host is
not allowed to send more than that amount of data before it must wait for a window update from the

receiving host.

The receiver may advertise a window size of 0. In such a case, the sender pauses sending data until a
new advertised window of more than 0 is received. It could happen that the next window size update
from the receiver is lost. Therefore, the sender starts the persist timer, which is used to protect TCP
from a deadlock situation. The TCP sender will recover from a potential deadlock situation, when the
persistence timer expires, by sending a small packet to the receiver so that the receiver can respond

by sending an acknowledgement containing the new window size.

Congestion control is perhaps the most important aspect of TCP, which makes TCP capable of
achieving high performance and avoid congestion collapse, at least in wired and single hop wireless
networks. Where the flow control mechanism addresses the receiver’s resources, congestion control

addresses the network resources, preventing the sender to push too much traffic into the network.
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Senders use the acknowledgments for data sent, and the lack of these, to infer network conditions

between the sender and receiver.

The TCP congestion control algorithm has received much attention after its introduction in 1988,
and a substantial number of proposals for improvement of the congestion control mechanism have
been put forward. Most of these TCP variants, such as Tahoe, Reno, Vegas etc. have focused on

congestion control, of which several are explained in Section 2.3.

Buffering small messages: TCP buffers outgoing messages that are smaller than one segment size
for up to 200 ms. This behavior, known as Nagle’s algorithm (see Section 2.3.1), is necessary to avoid
very high overhead per payload byte. However, for some applications it can result in a very high
delay, for instance for remote console applications like telnet, where TCP is used to communicate
keystrokes. The message buffering is enabled by default, but the TCP header implements the
Push (PSH) flag which signals to the protocol that the data should be forwarded to the receiver
application immediately. In socket Application Programming Interface (API), the corresponding
option is the TCP_NODELAY socket option.

Connection termination: The two sides of the connection perform the connection termination
phase independently. When an endpoint wishes to stop its half of the connection, it transmits a FIN
packet, which is acknowledged by the other end. A typical tear-down thus requires a pair of FIN
and ACK segments from each TCP endpoint. After the conclusion of both FIN/ACK exchanges, the
terminating side waits for a timeout before finally closing the connection. In this time span, the local
port is unavailable for new connections. This prevents confusion if delayed packets of the current

connection are delivered during subsequent connections.

A connection can be “half-open”. In this case, one side has terminated its end, while the other has
not. The side that has terminated can no longer send any data into the connection, even though the
other side can. The connection can also be terminated by a three-way handshake, where host A sends
a FIN, host B replies with a FIN & ACK (combining two steps into one), and host A replies with an
ACK.

2.3 Historic development
2.3.1 The origins of TCP

The work on a transmission protocol for communication between “isolated” packet networks started
as early as 1974 with the description of a TCP-like protocol by Vint Cerf and Bob Kahn [11]. In
1975, Ray Tomlinson introduced the three-way handshake [12]. The specification of TCP dates back
to 1981 and the RFC 793 [8]. The specification has later been amended and changed, which has been
documented through a large number of IETF RFCs [13, 9, 14, 15, 7, 16, 17], and a roadmap to the
different documents specifying and extending TCP is presented by M. Duke et al. in [18].

Although several extensions and modifications of TCP have been proposed, most are changes to the

sender side, leaving the protocol compatible with earlier versions. A milestone in the work on TCP
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was New Year’s Day 1983, when the Advanced Research Projects Agency Network (ARPANET)
had officially completed its migration to the TCP/IP protocol suite.

In 1984, John Nagle proposed an algorithm now known as Nagle’s algorithm [19]. The algorithm
concatenates a number of small buffer messages. This increases the network efficiency through
reducing the number of packets that must be sent. This again greatly reduces the overhead of small

packets. The work predicted congestion collapse in the ARPANET.

The problems predicted by Nagle began occurring in October 1986, when the ARPANET saw several
collapses caused by congestion. This spurred initiatives to address the problem. In 1987, Karn’s
algorithm [20] to better estimate the RTT in TCP was proposed, and in 1988, Van Jacobson and
Michael Karels enforced TCP with congestion control. This was an extension to the existing flow
control, which protected the receiver from being overrun. Today, the congestion control functionality

has made TCP to be widely regarded as the protocol that ”saved the Internet”.

The congestion algorithm proposed by Jacobson and Karels opened a new field of research, focusing
on the optimization of the congestion control mechanism. The next part of this report presents the

most important TCP variants from the literature up until 1996 in chronological order.

2.3.2 TCP Tahoe

The first version of TCP with congestion control became known as TCP Tahoe® [22]. Tahoe
was, in the same way as TCP Reno (Chapter 2.3.3), named after the variant of the 4.3 Berkeley
Software Distribution (BSD) Operating System (OS) where they first appeared. These BSD OSs
were themselves named after Lake Tahoe and the city of Reno, Nevada. The “Tahoe” algorithm first
appeared in 4.3BSD-Tahoe (which was made to support the CCI Power 6/32 “Tahoe” minicomputer),
and was made available to non-AT&T® licensees as part of the “4.3BSD Networking Release 17; this

ensured its wide distribution and implementation.

The TCP Tahoe congestion control strategy consists of multiple mechanisms. For each connection,
TCP maintains a congestion window that limits the total number of unacknowledged packets that may
be in transit end-to-end. The congestion window is an extension of the sliding window that TCP uses
for flow control. When a connection is initialized, and after a timeout, TCP uses a mechanism called
slow start to increase the congestion window. It starts with a window of two times the Maximum
Segment Size (MSS). Although the initial rate is low, the rate of increase is very rapid. For every
packet acknowledged, the congestion window increases by one MSS so that effectively the congestion
window doubles for every RTT. The window is doubled as follows: If the congestion window has
two packets outstanding, and one packet is acknowledged, this means that the congestion window is
increased to three packets, and only one packet is outstanding. I.e. the sender may now send two
new packets. When the final packet (of the original two) is acknowledged, this allows the sender to
increase the congestion window with one MSS yet again, bringing the total congestion window to

>The TCP nicknames for the algorithms appear to have originated in a 1996 paper [21] by Kevin Fall and Sally Floyd,
which compares Tahoe, Reno, and SACK TCP using simulations.
SAT&T is no longer an acronym, but was originally an abbreviation for “American Telephone & Telegraph”.
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four, and of these two are free. In other words, the congestion window has doubled.

When the congestion window exceeds a threshold ssthresh, the algorithm enters a new state, called
congestion avoidance. In some implementations (e.g., Linux), the initial ssthresh is large, resulting
in the first slow start usually ending in a loss of a packet. The ssthresh is updated at the end of each

slow start, and will often affect subsequent slow starts triggered by timeouts.

In the state of congestion avoidance, the congestion window is additively increased by one MSS
every RTT, instead of the previous one MMS per acknowledged packet, as long as non-duplicate

ACKSs are received.

When a packet is lost, the likelihood of receiving duplicate ACKs is very high. (It is also possible,
though unlikely, that the stream has undergone extreme packet reordering, which would also prompt
duplicate ACKs.) Triple duplicate ACKs are interpreted in the same way as a timeout. In such a case,
Tahoe performs a “’fast retransmit”, reduces the congestion window to one MSS, and resets to the

slow-start state.

2.3.3 TCP Reno

14
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Y \
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Transmission round

Figure 2.3 Congestion window development for Tahoe and Reno.

Improvements to Tahoe were made in 4.3BSD-Reno in 1990 and subsequently released to the public
as "Networking Release 2” and later 4.4BSD-Lite. The Reno version of TCP introduces a fast
recovery phase. If three duplicate ACKs are received, Reno will halve the congestion window,
perform a fast retransmit, and enter a state called fast recovery. In this state, TCP retransmits the
missing packet that was signaled by three duplicate ACKs, and waits for an acknowledgment of the
entire transmit window before returning to congestion avoidance. If there is no acknowledgment,
i.e., if an ACK times out, TCP Reno experiences a timeout and enters the slow-start state, just like
Tahoe. Figure 2.3 shows a comparison of the congestion window increase and the use of thresholds

for Tahoe and Reno. Notice how the packet loss occurring after transmission round eight makes
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Tahoe go into slow start and only beginning congestion avoidance in round 12, while Reno goes into

fast recovery, whereby it halves its window and starts congestion avoidance directly.

2.3.4 RED and ECN

Random Early Detection (RED) [23] is an active queue management algorithm, as well as a congest-
ion avoidance algorithm, proposed in 1993. In the traditional tail drop algorithm, a router buffers as
many packets as it can, and simply drops the ones it cannot buffer. If buffers are constantly full, the
network is congested. Tail drop distributes buffer space unfairly among traffic flows. Tail drop can
also lead to TCP global synchronization as all TCP connections "hold back” simultaneously, and

then step forward simultaneously.

RED monitors the average queue size and drops packets based on statistical probabilities. If the
buffer is almost empty, all incoming packets are accepted. As the queue grows, the probability
for dropping an incoming packet grows too. When the buffer is full, the probability has reached 1
and all incoming packets are dropped. RED is more fair than tail drop, in the sense that it is not
biased against bursty traffic that uses only a small portion of the bandwidth. The more traffic a host
transmits, the more likely it is that its packets are dropped, as the probability of a host’s packet being
dropped is proportional to the amount of data it has in a queue. Early detection helps avoid TCP

global synchronization.

Explicit Congestion Notification (ECN) [7, 24] is an extension to TCP dating back to 1994 that
allows end-to-end notification of network congestion without dropping packets. It can be seen as
an improvement of RED where packet drops are avoided, but it requires support by the TCP sender
implementation. The extension is an optional feature that is only used when both endpoints support it
and are willing to use it, and it depends on underlying network support to be effective. In the earlier
variants of TCP, congestion is signaled by dropping packets. Using ECN, an ECN-aware router may
set a mark in the IP header instead of dropping a packet in order to signal impending congestion. The
receiver of the packet echoes the congestion indication to the sender, which must react as though a

packet was dropped.

2.3.5 TCP Vegas

In 1993-1994, TCP Vegas [25, 26] was proposed. It provides a TCP congestion avoidance algorithm
that uses packet delay, rather than packet loss, as a signal to help determine the rate at which to send
packets. TCP Vegas detects congestion at an incipient stage based on increasing RTT values of the
packets in the connection. Thereby, it can identify the queuing delay and based on this adjust the
congestion window size. The difference between expected traffic and actual traffic is used to adjust
the size of the congestion window. Both the increase and decrease of the rate is additive (Additive
Increase, Additive Decrease (AIAD)).

The Vegas congestion detection algorithm differs from earlier TCP variants such as Tahoe and Reno,
and also later variants like New-Reno (Chapter 2.3.7) and SACK (Chapter 2.3.8), where congestion
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is detected by packet drops only after it has actually happened. Other TCP versions, such as Reno,
keep increasing the sending rate until a packet is lost, and therefore they will always incur packet
loss at some point or other. Vegas has achieved 40 to 70% better throughput than TCP Reno with less
than half the packet loss [25]. In addition to its innovative congestion detection, Vegas still retains the
default congestion detection mechanism, enabling packet loss detection through the default timeout

if the other mechanisms fail.

In addition to the modified congestion avoidance mechanism, the TCP Vegas proposal also adapts
the retransmission mechanism to avoid timeout if the sender never receives 3 duplicate ACKs (due to
lost segments or window size is too small.). In such a case, the sender can do retransmission after

one dupACK is received, if RTT estimate > timeout.

Finally, the slow start phase is modified so that the sender tries to find the correct window size without

causing a loss.

The Vegas algorithm depends heavily on accurate calculation of the base RTT value. If it is too small,
then the throughput of the connection will be less than the bandwidth available, while if the value is
too large, it will push too much traffic over the network path. Another challenge is the problem of
rerouted paths, where the algorithm will have problems knowing the base RTT value. Finally, when
TCP Vegas is run on a network that is running other variants of TCP that are less able to detect and

act upon congestion, e.g., Reno, TCP Vegas will also get an unfairly small share of the bandwidth.

2.3.6 Improved startup behavior of TCP congestion control

In 1996, Janey Hoe proposed changes to the congestion control scheme in current TCP implementa-
tions to improve its behavior during the start-up period of a TCP connection [27]. The scheme uses
acknowledgments from a receiver to dynamically calculate reasonable operating values for a sender’s
TCP parameters governing when and how much a sender can pump into the network. Since a TCP
sender starts with default parameters, it often ends up sending too many packets and too fast during
the startup period, leading to multiple losses of packets from the same window. Recovery from losses
during this start-up period is often unnecessarily time-consuming, and the changes that Hoe proposed
for the Fast Retransmit algorithm allow TCP to quickly recover from multiple packet losses without

waiting unnecessarily for the timeout.

2.3.7 New-Reno

The New-Reno TCP variant was proposed in 1995-1996 by Floyd et al. [28]. It is a modification of
TCP Reno, improving retransmissions during the fast recovery phase. In this phase, a new unsent
packet from the end of the congestion window is sent for every duplicate ACK that is returned, to
keep the transmit window full. For every ACK that makes partial progress in the sequence space, the
sender assumes that the ACK points to a new hole, and the next packet beyond the acknowledged
sequence number is sent. The progress in the transmit buffer resets the timeout timer, and this allows

New-Reno to fill large or multiple holes in the sequence space. High throughput is maintained
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during the hole-filling process, because New-Reno can send new packets at the end of the congestion
window during fast recovery. When entering fast recovery, TCP records the highest outstanding
unacknowledged packet sequence number. Upon the acknowledgment of this sequence number,
TCP returns to the congestion avoidance state. New-Reno will misinterpret the situation if there are
no losses, but instead reordering of packets by more than 3 packet sequence numbers. In such a
case, New-Reno mistakenly enters fast recovery, but when the reordered packet is delivered, ACK
sequence-number progress occurs and from there until the end of fast recovery, every bit of sequence-
number progress produces a duplicate and needless retransmission that is immediately acknowledged.

New-Reno substantially outperforms Reno at high error rates.

New-Reno is the default TCP variant for MS Windows XP.

2.3.8 SACKTCP

Selective Acknowledgment (SACK) TCP was another improvement to TCP proposed in 1996, in RFC
2018 [10]. The earlier variants of TCP, even back to Tahoe, implement a cumulative acknowledgment
scheme where a lost packet results in duplicate ACKs for each subsequently received packet. Relying
purely on the cumulative acknowledgment scheme can lead to inefficiencies when packets are lost.
An example of this is a case where 10,000 bytes are sent in 10 different TCP packets, and the first
packet is lost during transmission. Using the cumulative acknowledgment scheme, the receiver
cannot say that it received the bytes 1,000 to 9,999 successfully, and only failed to receive the first
packet, containing the bytes 0 to 999. Thus the sender may then have to resend all 10,000 bytes.

To solve the inefficient retransmission problem, TCP may employ the SACK option’, which allows
the receiver to acknowledge discontinuous blocks of packets that were received correctly. This is
an additional mechanism to the sequence number of the last contiguous byte received successively,
as in the basic TCP acknowledgment. The acknowledgment can specify a number of SACK blocks,
where each SACK block is conveyed by the starting and ending sequence numbers of a contiguous
range that the receiver correctly received. In the example above, the receiver would send SACK with
sequence numbers 1,000 and 9,999, and the sender will therefore only retransmit the first packet,
bytes 0 to 999.

The Selective Acknowledgment option is widely accepted, and has been enabled by default in Linux
since kernel 2.2.

2.3.9 BIC & CUBIC

Binary Increase Congestion control (BIC)-TCP [29], from 2004, is an implementation of TCP with
an optimized congestion control algorithm for high speed networks with high latency: so-called
’long fat networks” and has a unique congestion window algorithm. The algorithm tries to find the

maximum where to keep the window at for a long period of time, by using a binary search algorithm.

"The SACK option is negotiated between the TCP endpoints, and is only used if support is advertised by both sides of
a connection.
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BIC-TCP was the default TCP variant for the Linux kernels 2.6.8 through 2.6.18.

In 2008, Ha et al. described and explained CUBIC?® in [30]. CUBIC is a less aggressive and more
systematic derivative of BIC-TCP. In CUBIC, the window is a cubic function of time since the last
congestion event, with the inflection point set to the window prior to the event. CUBIC has been
the default TCP variant for Linux since kernel 2.6.19 (2006), replacing BIC-TCP, but the CUBIC

implementation has since gone through several upgrades. These are documented in [30].

2.3.10 Compound TCP

Compound TCP (CTCP) [31], proposed in 2005, is designed to aggressively adjust the sender’s
congestion window to optimize TCP for connections with large bandwidth-delay products while
trying not to harm fairness. It is implemented as standard TCP version in Windows Server 2008, and
is also available (but disabled by default) in Windows Vista and Windows 7.

The CTCP is claimed to be a synergy of delay-based and loss-based approach, where a scalable
delay-based component is added into the standard TCP Reno congestion avoidance algorithm (a.k.a.,
the loss-based component). The sending rate of CTCP is controlled by both components. The new
delay-based component can rapidly increase sending rate when the network path is underutilized,
but gracefully retreat in a busy network when a bottleneck queue is built. The authors argue that
augmented with this delay-based component, CTCP provides very good bandwidth scalability and at

the same time achieves good TCP-fairness.

2.4 Usage in today’s Internet

Medina, Allman and Floyd study the evolution of TCP variation usage in the Internet in [32], where
they present usage numbers from February 2004. Some of the results are as follows:

e SACK is prevalent (in 2/3 of servers and 9/10 of clients).

e New-Reno is the predominant non-SACK loss recovery strategy.

e Duplicate Selective Acknowledgment (D-SACK) is gaining prevalence (supported by 40% of
servers and at least 3% of clients).

e Most servers halve their congestion window correctly after a loss.

e Most web servers use packet counting to increase the congestion window.

e Most web servers use an Initial Congestion Window (ICW) of 1 or 2 segments.

e ECN is not common, with 93% classified directly as non-ECN-capable.

e The most widely used advertised window among clients is 64 KB with many clients using 8
KB and 16 KB, as well.

e Finally, most of the clients in the survey use an MSS of around 1460 bytes.

Yang et al. show in [33] that the use of congestion avoidance algorithm by the 5000 largest web

servers in February 2011 was as follows:

8The name CUBIC is not an abbreviation, but rather a combination of the name of its originator, BIC, and the fact that

it uses a cubic function to regulate the window growth.
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e Only 16.85-25.58% of web servers still used the traditional Additive Increase, Multiplicative
Decrease (AIMD).

e 14.36%, 15.82%, and 14.33% of web servers used BIC, CUBIC’ (kernel 2.6.25 and before),
and CUBIC (kernel 2.6.26 and after), respectively. Total = 44.51%.

e 9.97% and 0.30-9.03% of web servers use CTCP’ (Windows Server 2003 and XP Pro x64)
and CTCP (Windows Server 2008, Vista, and 7), respectively. Total = 10.27-19%.

e Surprisingly, some web servers use non-default TCP algorithms (such as Yet Another High-
speed TCP (YeAH-TCP)), some web servers use some unknown TCP algorithms which are
not available in any major operating system family, and some web servers use abnormal slow

start algorithms.

The changes from 2004 to 2011 show that there is a move towards implementations of CTCP
and CUBIC. These are TCP variations that are optimized for connections with large bandwidth-
delay products. The challenges of MANET communications are thus not targeted by the major OS

developers, and these are by default deciding the TCP variation selection for most users.

3 Challenges for TCP in MANETSs
3.1 Introduction

The challenges for TCP in MANETS span all the layers below the transport layer in the OSI network
stack [1]. At the PHY layer, interference and fading may result in bit errors and lost packets. At
the MAC layer, the medium access may induce delay and is not able to totally avoid collisions,
potentially causing packet loss if retransmission mechanisms are unable to salvage the problem.
Retransmissions will also create delay and jitter. Some Medium Access Control (MAC) protocol
implementations are able to dynamically change the data rate based on the transmission success. At
the network layer, the routing protocol’s delay in detecting topology changes may lead to periods
without connectivity. Also, the end-to-end transmission time will change as a result of changing

paths between the source and destination.

The IEEE 802.11 wireless stack [34, 35] is by far the most common wireless platform that is used
for ad hoc networking today. Many MANET challenges have been identified based on work with
the 802.11 platform, and in some cases the problems and subsequent solutions have focused more
on mending the 802.11 standard than on addressing MANET problems generically. However, it
is important to note that the 802.11 stack implements several mechanisms that are necessary for a
functional MANET based on a Carrier Sense Multiple Access (CSMA)/Collision Avoidance (CA)
MAC protocol. The functionality of 802.11 as a MANET carrier has been studied extensively, and in
this TCP for MANET memo, the examination by Xu and Saadawi is particularly interesting. In 2001,
Xu and Saadawi [36] examined how well — or rather how badly — TCP was supported in an IEEE
802.11 MAC MANET, with the focus on showing why the 802.11 protocol was unfit for MANET

communication.

Mirhosseini and Torgheh give a good overview of the challenges of TCP in MANETS in [37]. In [38],
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Papanastasiou et al. extensively evaluate several wire-based TCP variants (Reno, New-Reno, and
Vegas) in different topology settings over the Ad hoc On-Demand Distance Vector Routing (AODV)
[39] protocol. Their results reveal the performance merits of TCP Vegas and New-Reno in MANETS
with respect to Reno, which is further explored and accounted for. Finally, the authors provide
thorough insight into the behavior of TCP through extensive tracing on the interaction of TCP with

the routing protocol.

The performance of several proposed MANET adaptations of TCP (TCP-F, ELFN, ATCP, Fixed
RTO and TCP-DOOR) is investigated in [40].

3.2 The Physical layer

At the PHY layer, interference and fading may result in bit errors and lost packets. While wired
links can now be regarded as so stable that one can ignore the probability of packet loss caused by
bit errors, this is not the case with wireless links. For wireless links, the bit error rate is several
orders of magnitude higher than wired links [41]. The TCP protocol was originally designed for
wired networks, and its congestion avoidance mechanism does not consider link errors as a possible
reason for packet errors or losses. Instead, TCP interprets packet losses caused by bit errors as
congestion. This can significantly degrade the performance of TCP over wireless networks, when

TCP unnecessarily invokes congestion control, causing reduction in throughput and link utilization.

3.3 The MAC layer

At the MAC layer, the contention based medium access may induce delay and is not able to completely
avoid collisions, potentially causing packet loss if retransmission mechanisms are unable to salvage
the problem. All MANET nodes share the same wireless medium. The contention and risk of
collisions is much higher in such wireless networks than in the wired environment. The IEEE 802.11
is a CSMA/CA protocol, and work on such protocols [42] has shown that the TCP performance

decreases drastically as the hop count is increased.

Retransmission mechanisms may also further increase the transmission delay, and create jitter as the
number of needed retransmissions varies. A consequence of unsuccessful transmissions can also be a
signal modulation change to improve the transmission success rate. This may result in a reduction
of the bit rate. The IEEE 802.11 standard [35] states that if a node does not receive a link layer
acknowledgement after retransmitting a DATA message 7 times (dot]1ShortRetryLimit), the node
must consider the link to be broken and should drop the DATA packet it tries to transmit.

It should also be noted that any MAC retransmission timeout must be kept at a significantly lower
time frame compared to the retransmission timeout of TCP. If the two timeouts are too close, there is
a chance that a packet may be retransmitted by TCP and by MAC at the same time, meaning that
there will be duplicate TCP packets in the network, wasting resources.

Some MAC implementations, such as the IEEE 802.11, implements dynamic change of modulation

to achieve the best performance in changing network conditions. For upper layer protocols, this may
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lead to a high degree of variation in the available capacity. Another type of MAC layer capacity
variation is Demand Assigned Multiple Access (DAMA), common in satellite communications,
where the allocated bandwidth depends on the measured traffic load”. The allocated bandwidth may
increase several times, creating unnecessary delay in achieving the desired and available capacity. In
both cases, the underlying available capacity may vary, requiring the TCP protocol to adapt quickly
and correctly in order to take full advantage of the available network resources.

Another problem with varying link technology over a path, both static and dynamic, is buffer bloat
[43, 44]. Buffer bloat is the existence of excessively large and frequently full buffers inside the
network, where they damage the fundamental congestion-avoidance algorithms of TCP. This problem

is especially pronounced at bottleneck links.

TCP will, upon receiving bytes to transmit, wait up to 200 ms for more bytes to fill a MSS segment.
The MSS size can be configured, but will usually default to the Ethernet Maximum Transmission
Unit (MTU) minus the IP and TCP headers. In the case of the transfer of a large number of bytes,
e.g. a file transfer, TCP will always produce MSS packets. This increases the risk of collisions in

wireless networks.

In a heterogeneous MANET, a path used by TCP may consist of links with highly differing character-
istics. The link types may vary from sat-com links with high delay, via stable, but low capacity Very
High Frequency (VHF) links to unstable and short-range Ultra High Frequency (UHF) links. This
will increase the challenges for TCP beyond the problems caused by one specific link technology.
If one link technology could be anticipated, TCP could have been optimized for this, but with very

diverse link technologies, link-specific optimizations will be difficult to implement.

3.4 The Network layer

At the network layer, the routing protocol’s delay in detecting topology changes may lead to periods
without connectivity and a risk of loops, both in case of mobility and fluctuating links. Also, the
end-to-end transmission time/RTT!? will change as a result of changing paths between the source
and destination. If the RTT is increased too much, timeouts will occur on the TCP sender, causing

unnecessary retransmissions.

If two neighboring nodes have different relative mobility, they will eventually become disconnected.
Any routes using this link will fail, and it is the task of the routing protocol to detect the link break
and discover an alternative route between the source and destination. In a MANET, this kind of
topology change will happen on a fairly frequent basis, due to the limited communication range of

radios.

Route failures and route changes may impact TCP in several ways. Route failures can cause packet
drops at the intermediate nodes. These will be interpreted as congestion loss, a timeout event happens

and TCP enters the slow-start process as if congestion occurred. Even if the routing protocol is able

°The current queue usage.
10The RTT is used by TCP to know the number of packets that are currently on their way to the destination.

22 FFl-rapport 2012/01289



to reroute the packets without packet loss, route changes can introduce frequent out-of-order packet
delivery. The cumulative acknowledgement mechanism of TCP will generate duplicate ACKs before
receiving the expected packet in sequence. If the sender receives three of such duplicate ACKs, TCP

also presumes the network is congested and invokes fast retransmission.

3.5 The Transport layer

The TCP is an end-to-end protocol. It should be agnostic to the available performance and attributes
of the lower layers. However, any solution that aims to improve TCP performance in MANETS by
tuning the TCP protocol will have to deal with senders that may not be aware that the receiver, or part
of the route, is in a MANET. As such, the end-to-end functionality of TCP is a challenge, since an
interconnected MANET will enable connections between end-users that may have greatly differing

versions of TCP implemented.

3.6 Cross-layer challenges

Cross-layer solutions are aimed at optimizing the network behavior across the layers of the network

stack. However, as explained in [45], not all optimizations work well in all situations.

One example of unfortunate cross-layer behavior has even been identified while working on this report.
It is not a direct TCP problem, but rather a problem with the use of Link Layer Notification (LLN)
[46], which is a well-known cross-layer mechanism. Consider a network where a link is experiencing
a high degree of bit errors and where a classic TCP variant like Reno or New-Reno is employed. The
BER may be so high that although the MAC retransmission mechanism can handle most of the losses,
sometimes a packet is lost. LLN is a mechanism to allow the routing protocol to discover link breaks
immediately upon failure to receive MAC layer ACK after the maximum number of retransmissions.
If the routing protocol considers the link down after one LLN and there are no other routes to the
destination, the routing protocol will need to rediscover the same link before TCP packets can again
be sent over it. In the meantime, the routing table will not contain an entry for the destination, and
subsequent packets generated by the TCP sender are lost until the link is up again. However, the TCP
congestion control will make sure that the interface queue is more or less filled with packets at the
moment the LLN is received. Thus, the TCP sender will continue to transmit already routed packets
over the link. The TCP receiver will in turn generate and transmit ACKs back towards the sender.
Since a packet was lost, the TCP sender will transmit duplicate ACKs with the segment number of
the last received packet before the lost packet. This activates a fast recovery phase at the TCP sender,
but this retransmitted packet is not routed down to the interface, since the link is not considered as up
by the routing protocol. Thus, the routing protocol and its use of LLN has broken the fast recovery
phase of TCP, and when the link is rediscovered again (after a default time of 4 to 6 seconds), TCP
will have to begin in slow start with its ICW of 1 or 2.
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3.7 Challenges summary

TCP faces challenges at all lower layers in the network stack in MANETS, especially due to the
congestion control mechanism which has problems differing between congestion and other network
communication events. The effect is lower network utilization in a network which already struggles

with low bandwidth. TCP might not be the best suited protocol in such environments.

On the other hand, MANETS are in great need of protocols that can adapt to changing bandwidths,
providing flow and congestion control, and in-order packet delivery. The intended function of TCP
makes it highly suited for MANETS.

The next section presents current proposals focused on the MANET challenges of TCP and solutions

for these.

4 Solutions to improve TCP’s performance in MANETs
4.1 Introduction

Several proposals to mend the many challenges encountered by TCP in MANETS have been generated
through research. Some of these solutions are presented below. The intention is to give the reader
an overview of the types of solutions that have been brought forward, for reference and for better
understanding of the ways that TCP’s challenges can be met.

IETF has addressed TCP’s challenges through several RFCs. Two of them are RFC3135 and
RFC3449. RFC3135 [47] is a survey from 2001 of Performance Enhancing Proxys (PEPs) employed
to improve degraded TCP performance caused by characteristics of specific link environments.

RFC3449 [48] presents best current practices (from 2002) with regards to network path asymmetry.

There are a number of surveys delving into the challenges of TCP in MANETS and possible solutions.
Wang and Zhang presents a survey on TCP over MANETS, introducing three major challenges
for TCP [49]. Two other publications that look at TCP and congestion control for MANETS are
[50, 51]. Al Hanbali et al. present in [50] a survey of TCP alternatives for MANETS, classifying
the alternatives in cross-layer and layered proposals. A very thorough survey of TCP and similar

congestion control protocols for MANETS is presented in [51].

In the following subchapters, many solutions for TCP in MANETS are presented. The solutions are
grouped according to the solution’s requirement for changes, spanning from the Gateway (GW)-
oriented low impact solutions that may be considered compatible with current TCP implementations,
through solutions that changes the behavior of one or both the end-points, to solutions that require all

nodes in the network to implement changes to support the solution:

e Gateway-oriented
e Changes limited to the source and/or the destination. These are further grouped according to

compatibility:
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— TCP compatible solutions
— TCP incompatible solutions
e Changes affecting relaying nodes

4.2 GW-oriented

GW-oriented solutions are solutions that require the entry point on the border of the MANET to have

special functions, in order for the solution to perform as desired.

DSProxy: In [52], Skjervold et al. present a Service Oriented Architecture (SOA) approach, pro-
posing a novel prototype proxy solution which adds both delay and disruption tolerance to Simple
Object Access Protocol (SOAP). The ”Delay and disruption tolerant SOAP Proxy” solution can
bridge heterogeneous networks and offers store-and-forward capabilities, delay tolerant network
capabilities and swappable transport protocols while retaining backward compatibility with Commer-
cial Off-The-Shelf (COTS) Web service clients and servers. The proxy solution does not rely upon
parsing or inspecting the SOAP messages, which allows for end-to-end security through encryption.

Web
service

Client DSProxy DSProxy

High speed Disadvantaged High speed
radio network s network ; fiber network

Figure 4.1 Proposed use of DSProxy, from [52].

The authors focus on the main challenge of using Web services in tactical communication systems,
with low bandwidth, high error rates and frequent disruptions. Web services are commonly used
with XML over TCP. Therefore, the authors propose to split the TCP stream (Figure 4.1) using a
node that terminates the TCP flow and forwards the data over the disadvantaged grid using a better
suited protocol such as UDP or A protocol for reliable multicast messaging in bandwidth constrained
and delayed acknowledgement (EMCON) environments (PMUL). PMUL is a multicast protocol for
Emission Control (EMCON) environments [53].

Split-TCP [54] is a solution for TCP seeking to resolve the unfairness suffered by connections with
a large number of hops, compared to connections with a low number of hops. The scheme separates
the functionalities of TCP congestion control and reliable packet delivery. For any TCP connection,
certain nodes along the route take up the role of being proxies for that connection (Figure 4.2). The
proxies buffer packets upon receipt and administer rate control. The buffering enables dropped
packets to be recovered from the most recent proxy. The rate control helps in controlling congestion
on inter-proxy segments. Thus, by introducing proxies, shorter TCP connections are emulated, and
better parallelism in the network is achieved. The simulations show that the use of proxies abates the

problems described as follows:

a) it improves the total throughput by as much as 30% in typical scenarios.

b) it reduces unfairness significantly. In terms of an unfairness metric that is introduced, the
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Figure 4.2  Split-TCP: TCP with proxies, from [54].

unfairness decreases from 0.8 to 0.2 (1.0 being the maximum unfairness).

The authors conclude that incorporating TCP proxies is beneficial in terms of improving TCP

performance in ad hoc networks.

TCP Gateway Adaptive Pacing (TCP-GAP): In [55], the authors introduce an effective congestion
control pacing scheme for TCP over multi-hop wireless networks with Internet connectivity. The
pacing scheme is implemented at the wireless TCP sender as well as at the Internet gateway, and
reacts according to the direction of TCP flows running across the wireless network and the Internet.
The authors analyze the causes for the unfairness of oncoming TCP flows and propose a scheme to
throttle aggressive wired-to-wireless TCP flows at the Internet gateway to achieve nearly optimal
fairness. The proposed scheme, which is denoted as TCP-GAP, does not impose any control traffic
overhead for achieving fairness among active TCP flows and can be incrementally deployed since
it does not require any modifications of TCP in the wired part of the network. The authors show,
in an extensive set of experiments using ns-2, that TCP-GAP is highly responsive to varying traffic
conditions, provides nearly optimal fairness in all scenarios and achieves up to 42% more goodput
for FTP-like traffic as well as up to 70% more goodput for HTTP-like traffic than TCP New-Reno.
The sensitivity of the considered TCP variants to different bandwidths of the wired and wireless links

with respect to both aggregate goodput and fairness is also investigated.

4.3 Changes limited to the source and/or the destination

Here, solutions that would impact only the source or the destination if implemented, are presented.
These are further divided into two sub-groups, depending on whether or not they are compatible with
the existing standard TCP implementations.

4.3.1 TCP compatible solutions

Ad Hoc TCP (ADHOCTCP): Mirhosseini and Torgheh [37] propose to improve TCP for MANETSs
through a solution named ADHOCTCP, by identifying three packet loss inducing network states and
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have TCP act according to the packet loss reason. The three states are Congestion, Channel error and
Disconnection. The congestion state is identified by use of two end-to-end measured metrics, Inter-
packet Delay Difference (IDD) and Short Term Throughput (STT), which complement each other. A
situation where IDD is high and STT is low is defined as a congested state. The disconnection state
is identified using Explicit Packet Loss Notification (EPLN) which is based on the Dynamic Source
Routing (DSR) protocol and an Internet Control Message Protocol (ICMP) “Host unreachable”
message. Finally, the channel error state is assumed after Retransmission Timeout (RTO) if the

network state is not detected as congestion by the end-to-end measurements.

Ad Hoc TCP (ADTCP) [56] performs multi-metric joint identification for packet and connection
behaviors based on end-to-end measurements, to robustly detect network states in the presence of
measurement noise. The metrics, measured at the transport layer, are Inter-packet Delay Difference
(IDD), Short Term Throughput (STT), Packet out-of-order delivery ratio (POR) and Packet loss
ratio (PLR). The solution relies solely on end-to-end mechanisms. Using the technique, a network

event is acted upon only if all the relevant metrics detect it.

Dynamic congestion window limit: In [57], Chen et al. address how to properly set TCP’s Congest-
ion Window Limit (CWL) to achieve optimal performance. The authors turn the problem of setting
TCP’s optimal CWL into identifying the Bandwidth-Delay Product (BDP) of a path in a MANET.
They first show and prove that, independent of the MAC layer protocol being used, the BDP of a path
in MANET cannot exceed the Round-Trip Hop-Count (RTHC) of the path. Further, the upper bound
is refined based on the IEEE 802.11 MAC layer protocol, and show that in a chain topology, a tighter
upper bound exists which is approximately % of the RTHC of the path. Based on this tighter bound,
the authors propose an adaptive CWL setting strategy to dynamically adjust TCP’s CWL according
to the current RTHC of its path. Simulations show that the strategy improves TCP performance by
8% to 16% in a dynamic MANET environment.

Dynamically delayed ACK: TCP performance over a static multi-hop network that uses the IEEE
802.11 protocol for access is studied by Altman and Jiménez in [58]. For such networks, the TCP
performance is mainly determined by the hidden terminal effects (and not by drop probabilities at
buffers) which limits the number of packets that can be transmitted simultaneously in the network.

The authors propose new approaches for improving the performance based on thinning the ACK
streams that compete over the same radio resources as the TCP packets. In particular, they propose
a new delayed ACK scheme in which the delay coefficient varies with the sequence number of the
TCP packet. Simulations are used to show that the ACK thinning allows to increase TCP throughput

substantially more than previous improvement methods.

Edge-based: R. de Oliveira et al. propose in [59, 60] a solution that only involves the end nodes in
the congestion control performed by TCP. In other words, no specific cooperation from intermediate
nodes is needed. Rather, a TCP sender monitors the network state and uses this input to react
correctly. Using this approach, different monitoring techniques may be used to infer the internal

network state. The authors propose to evaluate the reliability of using RTT variation monitoring as a
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congestion indication. Further, the use of fuzzy logic theory for assisting the TCP error detection
mechanism in such networks is investigated. An elementary fuzzy logic engine is presented as an
intelligent technique for discriminating packet loss due to congestion from packet loss by wireless
induced errors. The architecture of the proposed fuzzy-based error detection mechanism is also
introduced and discussed. The full approach, for inferring the internal state of the network, relies on
RTT measurements only. Hence, this is an end-to-end scheme which requires only the end nodes’

cooperation.

Explicit Notification with enhanced Inter-layer Communication and control (ENIC): Sun and
Man propose an end-to-end reliable data transport scheme in [61]. The goal is to solve the issues
of TCP performance degradation and packet losses due to bit errors and route failures in mobile ad
hoc networks. The scheme is referred to as ENIC mechanism. The authors introduce the new design
methodology - enhanced inter-layer control mechanism to improve the reliability of data transport.
Comprehensive effects of interactions among MAC, routing and TCP are considered. The scheme is

claimed to provide a true end-to-end TCP maintenance and recovery method during the route failure.

Fractional Window Increment (FeW): Analyzing TCP’s operation over IEEE 802.11 multi-hop ad
hoc networks also involves a cross-layer study. In [62], the authors investigate the effect of congestion
and MAC contention on the interaction between TCP and on-demand ad hoc routing protocol in the
802.11 ad hoc networks. The study reveals several problems stemming from lack of coordination
and sharing in such networks. It is observed that TCP induces the over-reaction of routing protocol
and hurts the quality of the end-to-end connection. Therefore, one of the critical sources of lowering
TCP throughput lies in the TCP window mechanism itself. To fix this problem, the authors propose
a FeW scheme for TCP to prevent the over-reaction of the on-demand routing protocol by limiting
TCP’s aggressiveness. The proposed scheme is applicable to a wide range of transport protocols
using the basic TCP mechanism, and the protocol behavior is analytically tractable. Simulation
results demonstrate that the proposed scheme can dramatically improve the TCP performance and the
network stability in a variety of IEEE 802.11 multi-hop networks. For example, in some chain-like
topologies, the proposed scheme outperforms basic TCP by over 90%, and recent related variants of
TCP (ADTCP and Link RED (LRED)) by over 70%.

Fixed-Retransmission Timeout (RTO): A simple heuristic is proposed in [63], called Fixed RTO,
to distinguish between route loss and network congestion and thereby improve the performance of the
routing algorithms. The TCP sender is modified, employing a heuristic to distinguish between route
failures and congestion without relying on feedback from other network nodes. When timeouts occur
consecutively, i.e. the missing ACK is not received before the second RTO expires, this is taken to
be evidence of a route loss. The unacknowledged packet is retransmitted again but the RTO is not
doubled a second time. The RTO remains fixed until the route is re-established and the retransmitted

packet is acknowledged.

Slow Congestion Avoidance (SCA): A number of recent research studies have explored ways to
improve TCP throughput in mobile ad hoc networks by improving its interaction with the IEEE

802.11 MAC layer. In particular, the hidden terminal effects caused by interference can impact
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TCP performance dramatically and have been dealt with in the past by restricting the maximum
sending window size. In [64], the authors have developed a TCP variant, which instead, adjusts the
sending rate increase to achieve competitive goodput for TCP connections, named SCA. Extensive
simulations indicate that a slower sending rate increase during the congestion avoidance phase of
TCP, leads to improved performance for TCP Reno, while eliminating the negative effects inherent
in restricting the maximum sending window size. The work discusses the applicability of the TCP
oriented solution to the hidden terminal effect, includes a performance comparison against existing

solutions and discusses its performance merits under various mobility conditions.

TCP with Adaptive Pacing (TCP-AP): In [65], the authors introduce a novel congestion control
algorithm for TCP over multi-hop IEEE 802.11 wireless networks implementing rate-based schedul-
ing of transmissions within the TCP congestion window. It is shown how a TCP sender can adapt
its transmission rate close to the optimum using an estimate of the current 4-hop propagation delay
and the coefficient of variation of recently measured round-trip times. The novel TCP variant is
denoted as TCP-AP. Opposed to previous proposals for improving TCP over multi-hop IEEE 802.11
networks, TCP-AP retains the end-to-end semantics of TCP and neither relies on modifications on
the routing or the link layer nor requires cross-layer information from intermediate nodes along
the path. A comprehensive simulation study using ns-2 shows that TCP-AP achieves up to 84%
more goodput than TCP New-Reno, provides excellent fairness in almost all scenarios, and is highly

responsive to changing traffic conditions.

TCP Detection of Out-of-Order and Response (TCP-DOOR) [66] is a new way to make TCP
adapt to frequent route changes without relying on feedback from the network. It is based on TCP
detecting out-of-order delivery events and inferring route changes from these events. Normal TCP
performs poorly in ad hoc networks because of frequent route changes. In TCP-DOOR, the sender
can distinguish route changes from network congestion by detecting out-of-order delivery, thereafter
improve the performance of normal TCP by not invoking unnecessary congestion control. The
simulation results showed that TCP-DOOR can improve the TCP throughput significantly, 50% on
average. The approach does not rely on the feedback from lower layers or from the network. The
feedback mechanism can be difficult to implement and expensive to deploy. The approach is purely
end-to-end, where only the endpoints participate in the procedure to determine the network state.
Another advantage is that this approach is also applicable in an environment having both ad hoc
and fixed network. Assuming that sender S and receiver R are in two fixed networks interconnected
by an ad-hoc network. The TCP connection between S and R faces the same problem of frequent
route changes. As a pure end-to-end approach, TCP-DOOR will work well in this environment, but
feedback-based approach will not. The obvious tradeoff is that a feedback-based approach is more
accurate because the information is directly from the network. So the conclusion is, for improving
TCP over ad hoc networks, the feedback-based approach should be used if available, otherwise, the

approach can work on any environment and still deliver a significant improvement.

TCP-FIT'! [67] is an improved TCP congestion control algorithm for wireless networks, and its

"'The protocol name TCP-FIT is not an abbreviation.
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performance is compared with existing state-of-the-art congestion control algorithms as well as
an application layer Parallel TCP scheme. In TCP-FIT, N virtual TCP sessions are utilized in a
single TCP connection. The algorithm uses both packet loss and queuing delay as inputs to the
congestion window control algorithm. The congestion window of each sessions is controlled in
an AIMD manner based on packet loss information, whereas the number N of virtual sessions is
adjusted dynamically based on delay. Experimental results demonstrate significant performance
improvements under various channel conditions. Compared with application layer Parallel TCP, the
proposed algorithm has the additional advantage of not requiring changes to the application layer

software.

TCP/Restricted Congestion Window Enlargement (TCP/RCWE): The authors of [68] propose
the TCP/RCWE, an enhancement to improve TCP’s performance in mobile multi-hop wireless ad-
hoc networks. The enhancement is based on enabling TCP to distinguish between causes of packet
loss, e.g., high bit error rate and congestion, and adapt TCP to the current network state. TCP adapts
its behavior to the network by considering the RTT of the packets. In contrast to other studies on TCP,
the authors not only consider the effects of node mobility and packet size on TCP’s performance, but
also the effects of medium disturbances, resulting in high bit error rates. The proposed enhancement
improves TCP by adapting its behavior to the ad-hoc network environment. All simulations were
performed with two different radio propagation models, and the TCP/RCWE is shown to be able to
adapt the transmission behavior of the sender to the current network state.

TCP Veno [69] is a simple and effective end-to-end congestion control mechanism for dealing with
random packet loss, which can be prominent in wireless access networks. Veno monitors the network
congestion level and uses that information to decide whether packet losses are likely to be due to
congestion or random bit errors. Specifically: (1) it refines the multiplicative decrease algorithm of
TCP Reno by adjusting the slow-start threshold according to the perceived network congestion level
rather than a fixed drop factor and (2) it refines the linear increase algorithm so that the connection
can stay longer in an operating region in which the network bandwidth is fully utilized. Some
results show that in typical wireless access networks with 1% random packet loss rate, throughput

improvement of up to 80% can be demonstrated.

TCP Westwood & Westwood+: TCP Westwood [70], proposed in 2001, is a sender-side modific-
ation of the TCP congestion window algorithm that is intended to improve upon the performance
of TCP Reno and TCP New-Reno (WestwoodNR) in wired as well as wireless networks. The im-
provement is most significant in wireless networks with lossy links, since TCP Westwood relies on
end-to-end bandwidth estimation to discriminate the cause of packet loss (congestion or wireless
channel effect) which is a major problem in TCP Reno. TCP Westwood does not require inspection
and/or interception of TCP packets at intermediate (proxy) nodes. Rather, it fully complies with
the end-to-end TCP design principle. TCP Westwood relies on end-to-end bandwidth estimation
to discriminate the cause of packet loss (congestion or wireless channel effect). The estimate is
then used to compute congestion window and slow start threshold after a congestion episode, that is,
after three duplicate acknowledgments or after a timeout. The rationale of this strategy is simple:
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in contrast with TCP Reno, which ”blindly” halves the congestion window after three duplicate
ACKs, TCP Westwood attempts to select a slow start threshold and a congestion window which are
consistent with the effective bandwidth used at the time congestion is experienced. The mechanism is
named “faster recovery”. The proposed mechanism is particularly effective over wireless links where
sporadic losses due to radio channel problems are often misinterpreted as a symptom of congestion

by current TCP schemes and thus lead to an unnecessary window reduction.

TCP Westwood+ [71] is an evolution of TCP Westwood. The main novelty of Westwood+ is the
algorithm used to estimate the available bandwidth end-to-end, since it was discovered that the
Westwood bandwidth estimation algorithm did not work well in the presence of reverse traffic, due to

ACK compression.

4.3.2 TCP incompatible solutions

Preferential ACK retransmission: In [72], the authors describe a new technique for improving
TCP performance in an ad hoc network that uses a table-driven type of routing protocol paying
attention to short-duration link failure. In addition, the work evaluates the case in which the effect
of the collision of a data packet and an ACK packet is suppressed by Delayed ACK and resending
the ACK packet preferentially. The authors show through simulations that the combination of these
improvements can increase the TCP throughput about 20%.

TCP-Dynamic Adaptive Acknowledgment (TCP-DAA): Multi-hop wireless networks based on
the IEEE 802.11 MAC protocol are promising for ad hoc networks in small scale today. The 802.11
protocol minimizes the well-known hidden node problem, but does not eliminate it completely.
Consequently, the end-to-end bandwidth utilization may be quite poor if the involved protocols
do not interact smoothly. In particular, the TCP protocol does not manage to obtain efficient
bandwidth utilization because its congestion control mechanism is not tailored to such a complex
environment. The main problems with TCP in such networks are the excessive amount of both

spurious retransmissions and contention between data and ACK packets for the transmission medium.

In [73], the authors propose a dynamic adaptive strategy for minimizing the number of ACK packets
in transit and mitigating spurious retransmissions, named TCP-DAA. Using this strategy, the receiver
adjusts itself to the wireless channel condition by delaying more ACK packets when the channel is
in good condition and less otherwise. The technique not only improves bandwidth utilization, but
also reduces power consumption by retransmitting much less than a regular TCP does. Extensive
simulation evaluations show that the scheme provides very good enhancements in a variety of

scenarios.

4.4 Changes affecting relaying nodes

Here, solutions that would represent changes to most of the network nodes if implemented, are

presented.

Alleviate self-contention: In [74], the authors focus on self-contention — contention between packets
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of the same transport layer connection along the path from source to destination. They observe that
self-contention plays an important role in degrading the TCP performance in multi-hop wireless
networks and that the use of the popular IEEE 802.11 MAC protocol exacerbates self-contention.

The authors propose and study two MAC-layer approaches to alleviate self-contention. The first
approach, called Quick Exchange (QE), is designed with the intent of reducing the effects of inter-flow
self-contention (e.g. between packets of the same connection traveling in opposite directions). The
design of the second mechanism, called Fast-Forward (FF) is geared towards decreasing intra-flow
self-contention (e.g. between packets of the same connection traveling in the same direction).

The proposed schemes are simulated and studied, and the authors observe that quick-exchange
consistently improves network aggregate goodput. In contrast to the expectations, FF causes sporadic
and often negative effects on goodput for TCP connections. Upon investigation they find that while
the MAC is, in some respect, operating more efficiently, interactions with TCP’s congestion control
mechanism cause the goodput to degrade. Various effects that cause the respective behaviors with
QE and FF are analyzed in detail.

Ad hoc TCP (ATCP) [75] is a TCP adaptation for MANETs where TCP in addition to receiving
information about route failures, takes into account high BER. Based on the information provided
by ECN or ICMP ”Destination Unreachable” packets, ATCP, a layer between IP and TCP, will put

TCP in the proper state. The three states are persist, congestion control, and retransmit.

Atra: Anantharaman et al. [76] investigate the impact of the mobility of nodes in an ad-hoc network
on TCP’s performance. The authors identify the key factors that contribute to TCP’s performance
degradation as TCP losses, MAC link failure detection latency, Link failure notification latency, and
Route computation time. The authors show that the above factors contribute both in absolute terms
and in terms of their impact on TCP’s behavior. The article presents a proposal for a framework
called Atra consisting of three easily implementable mechanisms at the medium access and routing
layers that alleviates the impact of mobility on TCP’s performance.

Cross-layer Congestion Control (C3TCP): Kliazovich and Granelli present in [77] the problem
of performance degradation of transport layer protocols due to the congestion of Wireless LANs
(WLANS). Following the analysis of available solutions to this problem, C3TCP is presented. The
solution is able to obtain higher performance by gathering capacity information such as bandwidth
and delay at the link layer. The method requires the introduction of an additional module within
the protocol stack of the mobile node, able to adjust the outgoing data stream based on capacity
measurements. Moreover, the authors present a proposal to support an optional field in the existing
IEEE 802.11 protocol, in order to support the presented congestion control solution as well as many
other similar approaches. The achieved results underline a good agreement with design considerations
and high utilization of the available resources.

Congestion-Aware Routing (CAR): TCP sessions in ad hoc networks compete with each other for
bandwidth. The use of shortest path routing can result in multiple TCP sessions being channeled via

a few congested areas or hotspots. As a consequence, most of these multiple TCP sessions interfere
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with each other and hence, experience significant performance degradations. Spatially separating the
TCP sessions such that they inflict much lower interference effects on each other may provide gains

in performance.

In [78], the authors first investigate the possibilities of achieving such gains by considering a central-
ized, ideal, and unrealistic congestion-aware routing approach. They find that spatial separation bene-
fits are possible with the considered approach, and can especially help long (in terms of hop count)
TCP connections. The solution is named Centralized Congestion-Aware Routing (CCAR). Further
they consider the implementation of a distributed routing protocol named Distributed Congestion-
Aware Routing (DCAR) to achieve the spatial separation benefits.

Due to practicalities, such as the need for the exchange of congestion state, the existence of stale
congestion information and the creation of sub-optimal paths, the benefits due to spatial separation
are considerably undermined. Both macroscopic simulations and microscopic studies of specific
constructed examples are performed to understand the reasons and quantify the various effects with
both the centralized and the distributed approaches. The studies suggest that achieving performance
gains by spatially separating TCP sessions may be extremely difficult if not impossible in ad hoc

networks.

COntention-based PAth Selection (COPAS): In [79], the authors address the capture problem of
TCP, which is a result of the interplay between the MAC layer and TCP backoft policies. This
interplay causes nodes to unfairly capture the wireless shared medium, hence preventing neighboring
nodes to access the channel. The capture problem of exponential backoff-based MAC protocols (e.g.,
IEEE 802.11 and Floor Acquisition Multiple Access (FAMA)) has been shown to have a negative
influence on the TCP performance over MANETS. This has again been shown to have major negative

effects on TCP performance, comparable to the impact of mobility.

A novel algorithm is proposed, called COPAS, which incorporates two mechanisms to enhance TCP
performance by avoiding capture conditions. First, it uses disjoint forward (sender to receiver for
TCP data) and reverse (receiver to sender for TCP ACKs) paths in order to minimize the conflicts
of TCP data and ACK packets. Second, COPAS employs a dynamic contention balancing scheme
where it continuously monitors and changes forward and reverse paths according to the level of MAC
layer contention, hence minimizing the likelihood of capture.

Through extensive simulation, COPAS is shown to improve TCP throughput by up to 90% while
keeping the routing overhead low. Contention-balancing takes into consideration the number of
MAC layer backoffs the nodes have experienced recently. COPAS can be deployed on top of any
on-demand routing protocol, such as DSR and AODV.

Cross-layer Information Awareness (IA) techniques for TCP are presented in [80]. The authors
propose to make routing protocols aware of lost data packets and ACKs and help reduce TCP timeouts
for mobility-induced losses. Toward this end, they present two mechanisms: Explicit Packet Loss
Notification (EPLN) and Best Effort ACK Delivery (BEAD). EPLN seeks to notify TCP senders
about lost data packets. For lost ACKs, BEAD attempts to retransmit ACKs at either intermediate
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nodes or TCP receivers. Upon route failures, ACKs are dropped silently. Therefore, TCP has to
wait for timeouts. EPLN and BEAD reduce TCP timeouts for mobility-induced losses by exploiting
cross-layer information awareness. With EPLN, intermediate nodes seek to notify TCP senders
about lost packets so that TCP can start retransmission earlier. With BEAD, intermediate nodes or
TCP receivers retransmit ACKs for lost ACKs in a best-effort way. Both mechanisms extensively
use cached routes, without initiating route discoveries at any intermediate node. The two feedback
mechanisms are applicable to any routing protocol, as they address general problems that occur at

the network layer.

Data and ACK combined: Since a radio channel is shared among terminals in an ad hoc network,
packet collisions are frequent. When transmitting packets using TCP, data and ACK packets are
transmitted in opposite directions on the same radio channel. Therefore, frequent collisions are
unavoidable, and this seriously degrades throughput. To reduce the likelihood of packet collisions
when an intermediate node transmits both data and ACK packets, these two types of packet can be

combined and transmitted at the same time to increase the efficiency of radio channel utilization.

In [81], the authors propose a new technique to improve TCP performance by combining data and
ACK packets. The proposed technique is claimed to be applicable to generic ad hoc networks,
although it is based on a Time Division Multiple Access (TDMA) MAC protocol. By means of a
simulation using networks with various topologies, the authors claim that throughput can be improved
by up to 60% by applying the proposed technique.

Explicit Link Failure Notification (ELFN): Holland et al. show in [82] that the legacy TCP
performs poorly under mobility, and propose ELFN as a solution to this problem. ELFN is similar
to TCP Feedback (TCP-F), but with ELFN the TCP is more active in the pause period, probing the
network to see if the route has been restored.

Link RED (LRED)/Adaptive Pacing: In [83], the authors study TCP performance over multi-hop
wireless networks that use the IEEE 802.11 protocol as the access method. Concluding through
analysis and simulations that TCP is poor at exploiting spatial reuse, the authors propose two
techniques, LRED and Adaptive Pacing. These techniques yield improvement in TCP throughput
by 5 % to 30% in various simulated topologies. The authors also validate some simulation results
through real hardware experiments.

The LRED algorithm is motivated by the observation that TCP can potentially benefit from the
built-in dropping mechanism of the 802.11 MAC. The main idea is to further tune up wireless
link’s drop probability, based on the perceived link drops. LRED is a simple mechanism that, by
monitoring a single parameter, the average number of retries in the packet transmissions at the
link-layer, accomplishes three goals: a) It helps to improve TCP throughput, b) It provides TCP an
early sign of network overload, and c) It helps to improve inter-flow fairness.

The goal of Adaptive Pacing is to improve spatial channel reuse, by distributing traffic among
intermediate nodes in a more balanced way, while enhancing the coordination of forwarding nodes
along the data path. The design is aimed at the IEEE 802.11 MAC, where a node is allowed to further
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back-off an additional packet transmission time when necessary, in addition to its current deferral
period (i.e. the random backoff, plus one packet transmission time). The extra backoff interval helps
in reducing contention drops caused by exposed receivers, and extends the range of the link-layer

coordination from one hop to two hops, along the packet forwarding path.

The LRED and Adaptive Pacing algorithms works together as follows: Adaptive pacing is enabled
by LRED. When a node finds its average number of retries to be less than min_th, it calculates its
backoff time as usual. When the average number of retries goes beyond min_th, Adaptive Pacing
is enabled and the backoff period is increased by an interval equal to the transmission time of the

previous data packet.

Loss Tolerant TCP (LT-TCP): TCP performance suffers substantially when packet error rates
increase beyond a value of about 1% - 5%. In [84], the authors propose LT-TCP, an end-end
mechanism to improve the TCP performance over networks comprised of lossy wireless link. The
scheme separates the congestion indications from the wireless packet erasures by exploiting ECN.
To overcome packet erasures, a dynamic and adaptive Forward Error Correction (FEC) scheme that
includes adaptation of the MSS for TCP is employed. Redundancy is added in the form of proactive
FEC which tunes itself to the measured error rate. The residual packet errors are handled by an
enhanced retransmission scheme using reactive FEC repair packets to complement proactive FEC
and SACK retransmission. Dynamically changing the MSS tailors the number of segments in the
window for optimal performance. The scheme is built on top of TCP-SACK and depends on SACK

and timeouts as a last resort.

Multipath-TCP: Lim et al. [85] investigate the TCP performance over a multipath routing protocol.
Multipath routing can improve the path availability in mobile environment. Thus, it has a great
potential to improve TCP performance in ad hoc networks under mobility. Previous research on
multipath routing have mostly used UDP traffic for performance evaluation. When TCP is used,
the authors find that most times, using multiple paths simultaneously may actually degrade TCP
performance. This is partly due to frequent out-of-order packet delivery via different paths. They then
test another multipath routing strategy called backup path routing. Under the backup path routing
scheme, TCP is able to gain improvements when challenged with mobility. Further, related issues of

backup path routing which can affect TCP performance are studied.

Non-work-conserving scheduling: Sometimes it would be desirable that ad hoc nodes can commu-
nicate with servers in wired networks to upload or download data in scenarios where wireless ad hoc
networks are deployed. In these cases TCP connections will span both wireless ad hoc and wired
domains. However, TCP often faces severe unfairness in this type of connection scenario, which

forces some TCP flows to completely stop transferring any data despite all links being in good states.

In [86], the authors propose a simple scheduling scheme, which helps competing TCP connections
to achieve fairness without much throughput loss. The algorithm is a simple non-work-conserving
scheduling algorithm to work with the IEEE 802.11 MAC protocol, replacing the normal First In,
First Out (FIFO) work-conserving scheduling scheme in ad hoc networks. Simulation results show
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that our scheme successfully eliminates the extreme unfairness existing in several scenarios.

Neighborhood RED (NRED): The TCP unfairness in ad hoc wireless networks stems from the
nature of the shared wireless medium and location dependency. Viewing a node and its interfering
nodes as a “neighborhood”, the aggregate of local queues at these nodes represents the distributed
queue for this neighborhood. However, this queue is not a FIFO queue. Flows sharing the queue
have different, dynamically changing priorities determined by the topology and traffic patterns. Thus,
they get different feedback in terms of packet loss rate and packet delay when congestion occurs. In
wired networks, the RED scheme was found to improve TCP fairness.

lil_] Outgoing Queue
Bl | Incoming Queue

Figure 4.3  Simplified representation of the distributed neighborhood queue, from [87].

In [87], the authors show that the RED scheme does not work when running on individual queues
in wireless nodes. Next, they propose a NRED scheme (Figure 4.3), which extends the RED
concept to the distributed neighborhood queue. By detecting early congestion and dropping packets
proportionally to a flow’s channel bandwidth usage, the NRED scheme is able to improve TCP
fairness. These two measurements can derive inputs needed for NRED implementation: 1) When a
packet in any outgoing queue is transmitted, node A will detect the medium as busy. 2) If a packet is
received to any incoming queue, node A can also learn this through the Clear To Send (CTS) packet
(the IEEE 802.11 MAC layer is assumed).

Simulation studies confirm that the NRED scheme can improve TCP unfairness substantially in
ad hoc networks. Moreover, the NRED scheme acts at the network level, without MAC protocol
modifications. This considerably simplifies its deployment.

Optimum Packet scheduling for Each Traffic flow (OPET): In wireless multi-hop ad hoc net-
works, nodes need to contend for the shared wireless channel with their neighbors, which could result
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in congestions and greatly decrease the end-to-end throughput due to severe packet loss. Several
papers have indicated that the IEEE 802.11 fails to achieve the optimum schedule for this kind of

contentions.

In [88, 89], the authors present a framework of multi-hop packet scheduling to achieve maximum
throughput for traffic flows in the shared channel environment. The key idea is based on the
observation that in the IEEE 802.11 MAC protocol the maximum throughput for chain topology is i
of the channel bandwidth and its optimum packet scheduling is to allow simultaneous transmissions
at nodes which are four hops away. The proposed fully distributed scheme generalizes this optimum
scheduling to any traffic flow that may encounter intra-flow contentions and inter-flow contentions.
The objective of the scheme is to achieve OPET, and hence greatly increase end-to-end throughput
and decrease end-to-end delay of multi-hop flows. By alleviating the intra-flow contention and
inter-flow contention problems, the scheme, aptly named OPET greatly reduces the resource wasted
by those dropped packets at forwarding nodes and thus could significantly improve the end-to-end

performance. The solution addresses the MAC-layer.

Extensive simulations indicate that the scheme could perform well and achieve high throughput at
light to heavy traffic load, while the performance of the original IEEE 802.11 MAC protocol greatly
degrades when the traffic load becomes heavy. Moreover, the scheme also achieves much better
and more stable performance in terms of delay, fairness and scalability with low and stable control

overhead.

Preemptive routing: While not directly motivated by TCP’s challenges in MANETS, preemptive
routing deserves commenting, since it addresses an important challenge for TCP in MANETS. Goff
et al. [90] propose adding proactive route selection and maintenance to on-demand ad-hoc routing
algorithms. The authors propose algorithms that initiate proactive path switches when the quality
of a path in use becomes suspect. When a path is likely to be broken, a warning is sent to the
source indicating the likelihood of a disconnection. The source can then initiate path discovery
early, potentially avoiding the disconnection altogether. A path is considered likely to break when
the received packet power becomes close to the minimum detectable power (other approaches are
possible). This proactivity avoids using a path that is about to fail and eliminates the associated
costs of detecting the failure and recovering from it, significantly improving the performance of the

network.

Another work that falls into the same category of preemptive routing is [91] by Larsen et al. It may
be considered the proactive equivalent of [90]. The contribution of [91] is the proposal to divide
the transmission area of a node into a safe zone and an unsafe zone (Figure 4.4), and distribute this
information to all neighbors. A node (A) can select routes preferring neighbors in the safe zone,
based on the knowledge of whether its neighbors are in the safe or unsafe zone. The nodes in the
buffer zone are considered to be at a higher risk of disappearing during the next HELLO timeout
period. If another node (B) exists that is both in the source node’s safe zone and also has the node
C in its own safe zone, it is considered safer to route packets via node B to node C. In other words,

from (A)’s perspective, node (B) is a safe node and node (C) is an unsafe node.
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Figure 4.4 Transmission area zones.

Rate Based end-to-end Congestion Control (RBCC): TCP encounters a number of new challenges
when applied in MANETs, such as wireless link error, medium contention, and frequent route failures.
And very poor performance of TCP in MANET has been reported in many recent studies.

In [92], Zhai et al. focus on the problems resulting from the medium contention and propose a novel
RBCC scheme. First they illustrate that, under the impact of medium contention, the window-based
congestion control algorithm is unstable and hence may not be appropriate for MANETS, because
the optimum congestion window size is very small and may be even less than one. I.e., the source
should send less than one packet in one RTT. Based on the novel use of channel busyness ratio,
which is shown to be an accurate sign of the network utilization and congestion status, a new rate
control scheme has been proposed to efficiently and reliably support the transport service in MANET.
In RBCC, a sub-layer consisting of a leaky bucket is added under TCP to control the sending rate
based on the network layer feedback at the bottleneck node. Extensive simulations show that the

scheme significantly outperforms traditional TCP in terms of channel utilization, delay, and fairness.

Signal strength based link management: In [93], the authors propose mechanisms that are based
on signal strength measurements to alleviate packet losses due to mobility. The key ideas are (a) if
the signal strength measurements indicate that a link failure is most likely due to a neighbor moving
out of range, in reaction, facilitate the use of temporary higher transmission power to keep the link
alive and, (b) if the signal strength measurements indicate that a link is likely to fail, initiate a route
re-discovery proactively before the link actually fails. The authors make changes at the MAC and the
routing layers to predict link failures and estimate if a link failure is due to mobility. In addition, they
propose a simple mechanism at the MAC layer that can help alleviate false link failures, which occur
due to congestion when the IEEE 802.11 MAC protocol is used.

The objective is to reduce the packet losses due to mobility in ad hoc networks and thereby improve
the performance of TCP. A link management framework is proposed that helps in salvaging TCP
packets in transit upon the incidence of link failure. The framework consists of three individual
components. First, a temporary increase in the transmit power level is induced when a node moves
out of range to temporarily re-establish the failed link. This would enable the TCP packets that are
already in flight to traverse the link. The use of the IEEE 802.11 MAC protocol causes false link
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failures due to congestion. The authors propose a mechanism that allows distinguishing between true
link failures due to mobility and false link failures. This mechanism is based on the measurement of
signal strength at the physical layer and is used to determine if a node is still within range. Power
levels are then increased to temporarily reestablish a failed link only if it is determined to be mobility
induced. A proactive scheme is included, in which weak links are identified based on these signal
strength measurements and routes are proactively found prior to failure. This scheme in turn helps
in switching to the new route even before the failure occurs and thus can stem packet losses. The
proactive and reactive signal strength based schemes are unified with another simple MAC layer
extension. With the extension, the MAC layer, upon perceiving false link failures, simply increases
the number of Request To Send (RTS) attempts in order to salvage transit TCP packets. The authors
recognize that additional mechanisms are necessary to correctly determine the levels of congestion
of the network. These mechanisms can help to decide whether the reactive Link Management (LM)
approach should be incorporated to salvage packets in transit since during heavy congestion and low

mobility, temporary increases in transmission power can lead to some adverse effects.

TCP Buffering capability and Sequence information (TCP-BuS) [94] uses network layer feed-
back to detect route failure events and to take appropriate reaction to the event. The scheme introduces
buffering capability in the mobile nodes. The scheme is based on the Associativity-Based Rout-
ing (ABR) protocol [95]. The node discovering a route failure is called the Pivoting Node (PN).
Upon receiving notice of a disconnection, packets along the path from the source to the PN are
buffered, and for these buffered packets, the retransmission timer is doubled. The lost packets along
the path from the source to the PN are not retransmitted until the adjusted retransmission timer

expires.

TCP Feedback (TCP-F) [96] is a TCP protocol based on feedback from the routing protocol to
handle route failures in MANETS. A route failure notification is sent to the source by the routing
agent on a node. The source freezes all variables for the TCP flow and puts the TCP flow on hold. The
TCP flow is then resumed when a notification of the route reestablishment is given. To avoid blocking,
the TCP protocol will timeout after a period without receiving a notification of reestablishment,

invoking the normal congestion control algorithm.

TCP-Recomputation (TCP-RC) [97] is a proposal for TCP in MANETSs where the TCP source is
notified through an Explicit Route Failure Notification (ERFN) message when a route fails. This
freezes the retransmission timers and pauses the congestion control. Upon the reconstruction of
the route, cwnd and ssthresh are re-computed for the TCP connection. Thus, it can adjust the TCP
transmission rate adaptively according to the current capacity of the TCP connection. Consequently,
TCP-RC lowers the possibility of bursty traffic and avoids invoking congestion control during a
situation of high network load.

4.5 Discussion

A significant number of works that address the problems faced by TCP in MANETSs have been

presented above. The solutions are not to be understood as products. In most cases the proposals
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have merely been considered by the authors themselves through analytical and simulation studies.
The simulation studies are often limited with regards to the types of scenarios in which the solutions
are tested.

Many of the solutions undoubtedly contain elements that are employable in a mobile military network.
However, it can be useful to study the needs of a mobile military network a bit closer. Employing a
solution would require thorough testing, and it would be preferable if the solution is implemented as
standard or configurable in most current OSs. Due to the large quantity of user equipment, the solution
would need to be highly scalable, and allow for partial implementation.'? It should be interoperable
with other NATO nations’ Networking and Information Infrastructure (NII). The solution would
have to be implementable on many different types of equipment and must be compatible with the

security architecture of the Norwegian Armed Forces (NAF).

Since the solution should allow partial implementation, it would be beneficial to know whether the
solution is compatible with existing TCP implementations. If the solution is compatible as is, then it
could be phased into the existing NII in smaller steps. Solutions incompatible with existing TCP will
require an arbitrator mechanism to determine if the new incompatible TCP version can be used, if

only some of the network nodes support the implementation.

Another way to solve a situation with a partially introduced TCP-for-MANET solution, is to “hide”
the MANET behind a gateway. Thus, any traffic entering or exiting the MANET can be controlled at
the border. TCP flows can be terminated from both sides at this GW. A new challenge that could
emerge from such a solution is problems handling the flow control between the two networks. In
addition, multi-homing of the MANET could force the GWSs to exchange a lot of state information. In
the short term, it may be difficult to implement a GW solution with extra TCP-for-MANET support
within the existing security architecture, as the encryption equipment software handles the required
GW functionality by itself, and this software has to be controlled by the security authorities.

A main question when considering implementing a solution is the impact of the solution with regards
to the required changes to current equipment. One can consider several different degrees of change.
The first is a case where no changes are needed at all, and where the solution can be enabled by
simple configuration. Another case is where only key equipment, such as GWs, needs to be changed.
However, it seems to be difficult to introduce a modified TCP solution without changing at least one
of the end-points. The most common change impact seen in the proposed solutions is a need to alter
the TCP protocol at the end-points. A more intrusive change is the requirement of changes even to
the TCP flow relay nodes. The final, and most intrusive type of change, requires the entire network

to implement certain behavior.
In Table 4.1, the presented solutions are evaluated against several criteria:

TCP compatible Is the solution compatible with current common implementations of TCP?

GW-oriented Is the solution oriented towards a GW improving the performance of TCP in the

12partial implementation is desired in order to phase in the solution gradually, and avoid the need for all equipment to be
changed at the same time.
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MANET?

Change impact What changes must be implemented to enable the solution?
N No changes.
E Changes only to one or both of the end-nodes.

R Changes to the relay-nodes as well as the endpoints.'?

As the table shows, most of the solutions are compatible with TCP implementations in current
systems. This does not mean that the solutions will give performance gains if used with these
non-MANET optimized TCP implementations, but rather that it is possible for two end-points, where

one is a vanilla TCP implementation, to communicate.

Very few of the solutions are GW-oriented, but in the near future, such solutions may be the easiest
to implement. They operate on the border of the MANET and may be configured to support the
desired behavior of the MANET.

In intrusiveness, all the solutions require some change to the network nodes, except DSProxy in its
most basic form. However, the DSProxy solution, as well as the other GW solutions, do require a
changed addressing scheme, where the TCP flow is terminated at the GW instead of at the end-point
in the MANET. Of the other solutions, many only require changes to the end-points, while some
even need the relay nodes to implement changes. It seems that the GW-oriented solutions may offer

the least change impact, even though they may require some change to the end-points in the MANET.

Most of the solutions address the incorrect behavior of the congestion control algorithm when facing

losses due to other causes than network overload.

ECN has not been explicitly presented as a solution for improving TCP’s performance in MANETS.
However, it is employed in multiple solutions to explicitly signal congestion, where packet loss due
to other causes than congestion is implicitly identified through the absence of a ECN. In such a case,

the congestion control algorithm should not be triggered.

It is important to be aware that most TCP changes only affect the traffic sent from the node, and not
the received traffic. Both ends must implement the change to ensure the proper behavior of other

congestion control methods.

End-point nodes inside the MANET may be connected via a wired Ethernet cable to a radio or a
router. This can pose a challenge for those solutions that depend on information flow between TCP
and other layers, for instance communication with the routing protocol so TCP’s parameters can be

frozen in case of rerouting delay.

Communication in military networks often requires encryption to secure classified information. The
current communication security architecture in the Norwegian NII is based on separating red enclaves

(plain text subnets) with secured information and a black network core (cipher text) using encryption

B3Solutions that require ECN signaling from relay nodes are classified as requiring changes to relay nodes, since the

ECN mechanism is not universally available.

FFl-rapport 2012/01289 41



Table 4.1 Evaluation of TCP solutions for improving TCP performance in MANET.

Name TCP GW- Change
compatible | oriented | impact
E
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ADTCP
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devices'*. Encrypted tunnels are established between encryption devices. This represents a problem
for many of the proposed solutions, since very little information is allowed through the encryption

device (between the red and black networks), and since the tunnels are point-to-point containing

'*Many of the problems that the use of encryption devices pose in the network infrastructure are described in [98].
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IP-packets with obscured payload. Thus, no relaying nodes in the black network may know whether
the packet contains TCP-information. While the security architecture may change in the distant
future, it is currently an architecture that needs to be taken into account, and it is interesting to

consider whether the solutions are compatible with networks connected using encrypted tunnels.

This report has focused on solutions aimed at MANETSs. A heterogeneous MANET may consist
of a lot of different links, even sat-com links. TCP over sat-com is another field entirely, but may
entail solutions with elements that could be employed in MANETS. A master’s thesis [99] with work
originating from FFI investigates the behavior of the TCP protocol over hybrid satellite networks.
The thesis provides a thorough description of TCP, satellite environments, and related challenges in
military networks containing both satellite and radio links. With an added delay of around 550 ms
for geostationary satellites and high bit error rates, TCP performance may suffer severely, depending
on the variant of TCP used. The thesis shows that due to fairness problems, the TCP variants
available to Windows 7 perform poorly in lossy networks in competition with CUBIC and Hybla.
Especially the latter outperforms the other variants in such environments. The result of competing on
the same bottleneck is unfairness at the cost of Windows 7 TCP variants. Solutions are proposed,
including tuning of the TCP variants, avoiding mixed-OS/TCP environments, or using a Performance
Enhancing Proxy (PEP) called PEPsal at the sender side. However, PEPsal breaks the end-to-end
principle of TCP, and depends on a plaintext TCP header — causing challenges in encrypted military

networks.

5 Conclusions

This report has presented the functionality of TCP, in addition to its development for wired networks
as the congestion window mechanism was invented and refined. The challenges that TCP faces in
MANETSs have been explained from a OSI network stack perspective. After this, a large number of
different proposals to make TCP work better in MANETSs were presented and discussed.

The discussion of the findings showed the complexity of the solutions and the problem of choosing
one single solution to improve the TCP performance, and more research is definitely needed before

any solution could be deployed as part of an operational network.

With the findings of this report taken into consideration, it is legitimate to ask whether TCP is the
only choice for reliable communication in MANETSs. There are efforts focusing on UDP-based
communications that may handle this communication well enough, employing Automatic Repeat-
reQuest (ARQ) at the MAC-layer and handling reliability at the application layer. In such a case,
the congestion control offered by TCP must be handled with other mechanisms, through admission
control and local Quality of Service (QoS). Another direction is within the research of Information

Centric Networking (ICN), where congestion avoidance is also addressed, e.g. [100].
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