FFI-rapport 2012/01746

Characterization of M7 Propellant Properties by Closed Vessel and Calorimeter

Gunnar Ove Nevstad

Norwegian Defence Research Establishment (FFI)

25 September 2012

FFI-rapport 2012/01746

375701

P: ISBN 978-82-464-2155-1 E: ISBN 978-82-464-2156-8

Keywords

Krutt

Dimmensjoner

Forbrenning

Brennhastighet

Energi

Approved by

Jan Ivar Botnan

Director

English summary

Two production mixes of M7 propellant for use in M72 –LAW have been tested in closed vessel and calorimeter for determination of any differences with regard to energy content and burning properties. In closed vessel three firings with loading density of 0.1, 0.15 and 0.2 g/cm³ were performed with both propellant mixes. This gave an Impetus of 1013.2 J/g for mix 285 and 1026.7 J/g for mix 458. Parr calorimeter measurements in oxygen atmosphere gave for mix 285 2035.8 cal/g and for mix 458 2055.6 cal/g. Both results indicate that mix 458 has slightly higher energy content than mix 285.

Burning rate of both propellant mixes has been determined. The result shows no significant differences for the two highest loading densities but the lowest loading density mix 285 shows a slightly higher burn rate. For all firings the experimentally burn rate curves are best described by a burn rate equation on the form $r=a+bP^n$.

Sammendrag

•

To blandinger av M7 krutt til bruk i M72-LAW har vært testet i trykkbombe og kalorimeter for bestemmelse av mulige forskjeller i energiinnhold og i brennhastighet. I trykkbombe ble det gjennomført tre fyringer for hvert av kruttene med ladetetthet på 0.1, 0.15 og 0.2 g/cm³. Resultatene ga en kruttkraft på1013.2 J/g for miks 285 og 1026.7 J/g for miks 458. Parr kalorimeter bestemmelsen ga miks 285 et energiinnhold på 2035.8 cal/g og miks 485 2056.6 cal/g ved forbrenning i oksygenatmosfære. Resultater som indikerer at miks 458 har et noe høyere energiinnhold enn miks 285.

Brennhastigheten for begge kruttmiksene har blitt bestemt. Resultatene viser at der er ingen forskjell i brennhastighet for de to høyeste ladetetthetene, mens det for den laveste ladetettheten er observert en litt høyere brennhastighet for miks 285 enn miks 458. For alle fyringene er den oppnådde eksperimentelle brennhastighetskurven best beskrevet av en ligning på formen $r=a+bP^n$.

Contents

1	Introduction	7
2	Experimental	7
2.1	Content	7
2.2	Dimensions	7
2.3	Closed Vessel	7
2.4	Calorimeter	8
3	Results	9
3.1	Dimensions of tested tubes	9
3.1.1	M7 propellant mix 285	9
3.1.2	M7 propellant mix 458	10
3.2	CV firings	13
3.2.1	Mix 458	13
3.2.2	Impetus and Co-volume	15
3.2.3	Mix 285	16
3.2.4	Impetus and Co-volume for mix 285	19
3.2.5	Comparison of pressure-time curves for the two mixes	20
3.3	Burning rate	23
3.3.1	Mix 458	23
3.3.2	Mix 285	31
3.3.3	Comparison between mix 285 and 458	38
3.4	Calorimeter measurements	40
3.4.1	Mix 285	40
3.4.2	Mix 458	41
References		43
Appendix A	Result forms – calculations of burning rate equations	44
A.1	CV-101	44
A.1.1	Result form for CV-101	44
A.1.2	Calculations of burn rate equations	45
A.2	CV-102	46
A.2.1	Result form	46
A.2.2	Calculations of urn rate equations	47
A.3	CV-103	48
A.3.1	Result form CV-103	48
A.3.2	Calculations of burn rate equations	49

A.4	CV-104	50
A.4.1	Result form for CV-104	50
A.4.2	Calculations of burn rate equations	51
A.5	CV-105	52
A.5.1	Result form	52
A.5.2	Calculations of burn rate equations	53
A.6	CV-106	54
A.6.1	Result form	54
A.6.2	Calculations of burn rate equations	55

1 Introduction

M7 a double base propellant is used in all versions of M72-LAW (Light Antiarmour Weapon). M7 propellant is an old propellant composition that has been produced by different manufacturers all over the world for decades. In Norway it was originally produced by Dyno Nobel ASA Gullaug plant until the plant was closed down some years ago. The tested propellant has been bought as a premix from a foreign supplier and extruded to propellant tubes at Nammo Raufoss.

We have received some tubes of M7 propellant from two different productions, mix 285 and mix 458 to be tested in closed vessel. By burning propellant in closed vessel properties as burning rate and energy content in form of impetus can been determined. The experimentally determination of the burn rate and impetus have been performed at room temperature according to STANAG 4115 (1). The Impetus has been determined by performing firings with three different loading densities. In addition to the closed vessel firing both propellant mixes have been tested in a Parr Calorimeter under oxygen atmosphere.

2 **Experimental**

2.1 Content

M7 propellant contains as main ingredients NC (Nitrocellulose) as binder and NG (Nitroglycerine) as plasticizer. In addition it contains EC (Ethyl Centralite) as stabilizer and Potassium Perchlorate. The nominal content of M7 is: 59.15% NC (13.15 %N), 31.4 % NG, 1.0 % EC, 7.9 % Potassium Perchlorate and 0.58% Graphite added as surface coating (2, 3).

2.2 Dimensions

We did receive approximately 350 g of both M7 propellant mixes in form of tubes with outer diameter of 5.9 mm and length of approximately 40 mm. Exact dimensions of the propellant tubes are necessary to know if the burn rate shall be calculated. The tube length was measured by use of a light microscope. Outer diameter was measured with a slide caliper while the inner diameter was measured by use of measuring pins with 0.01 mm accuracy. All results are given in Table 3.1 -3.4

2.3 Closed Vessel

The pressure time curves were obtained by firing the propellant in a 700 cm³ closed vessel with water jacket as shown in Figure 2.1. To ignite the propellant we used 1 g black powder in a plastic bag and a brown-blue squib. A picture of the ignition unit is shown on the left side of Figure 2.1 and the closed vessel is shown in the two other pictures.

Figure 2.1 The left picture shows the igniter unit with 1g black powder and the next two pictures show the 700 cm³ Closed Vessel.

The pressure was measured with a Kistler 6215 pressure cell with serial number SN 1007776. The pressure was registered every micro second and for each firing we collected 65 536 samples.

To be able to determine the impetus we carried out firings at three different loading densities (0.1, 0,15 and 0.2 g/cm³). All firings were performed at room temperature (21° C). The burn rate of the propellants was calculated by use of a program developed at FFI (4).

2.4 Calorimeter

Both propellant mixes were tested in a Parr 6300 Calorimeter under oxygen atmosphere. The results are given in 3.4.

3 Results

3.1 Dimensions of tested tubes

3.1.1 M7 propellant mix 285

The original propellant tubes were much longer than the height of the closed vessel chamber. Therefore the propellant that we received had been cut into tubes with length 40.4 ± 0.7 mm by Nammo so they could be filled into the closed vessel. Figure 3.1 gives a picture of some tubes from mix 285.

Figure 3.1 Picture of M7 propellant tubes from mix 285.

Tube No.	Diameter Outer top (mm)	Diameter Outer bottom (mm)	Average Diameter Outer (mm)	Diameter Inner top (mm)	Diameter Inner bottom (mm)	Average Diameter Inner (mm)	Length (mm)
1	5.90	5.91	5.905	4.06	4.09	4.075	41.06
2	5.89	5.87	5.880	3.91	3.91	3.910	41.72
3	5.88	5.88	5.880	4.01	4.04	4.025	39.85
4	5.92	5.90	5.910	4.05	4.03	4.040	40.52
5	5.91	5.91	5.910	4.07	4.06	4.065	40.26
6	5.88	5.90	5.890	4.05	4.05	4.050	39.43
7	5.97	5.93	5.950	4.09	4.05	4.070	41.35
8	5.90	5.89	5.895	4.02	4.01	4.015	40.29
9	5.92	5.92	5.920	4.06	4.06	4.060	40.95
10	5.95	5.95	5.950	4.11	4.10 4.105		39.91
11	5.88	5.90	5.890	4.06	4.05	4.055	41.17
12	5.91	5.91	5.910	4.04	4.04	4.040	40.72
13	5.87	5.89	5.880	4.01	4.06	4.035	40.70
14	5.94	5.95	5.945	4.07	4.05	4.060	40.72
15	6.08	6.07	6.075	4.12	4.10	4.110	40.45
16	5.94	5.95	5.945	4.03	4.06	4.045	41.30
17	5.93	5.93	5.930	4.04	4.06	4.050	40.75
18	5.90	5.93	5.915	4.07	4.07	4.070	40.74
19	5.93	5.92	5.925	4.05	4.05	4.050	41.29
20	5.92	5.91	5.915	4.03	4.03	4.030	39.84
21	5.89	5.90	5.895	4.04	4.02	4.030	39.26
22	6.00	5.99	5.995	4.10	4.12	4.110	38.60
23	5.92	5.90	5.910	4.06	4.01	4.035	39.75
24	5.93	5.95	5.940	4.04	4.06	4.050	39.87
25	5.92	5.92	5.920	4.10	4.10	4.100	40.34
Average	5.92+0.04	5.92+0.04	5.92+0.04	4.05+0.04	4.05+0.04	4.05+0.04	40.43+0.74

 Table 3.1
 The Table shows measurements of the tube dimensions for M7propellant from mix 285.

Tube No.	Average Outer Diameter (mm)	Average Inner Diameter (mm)	Length (mm)	WEB (mm)	Volume (mm ³)	Weight (g)	Density (g/cm ³)
1	5.905	4.075	41.06	0.9150	588.97	0.9983	1.695
2	5.880	3.910	41.72	0.9850	631.95	0.9991	1.581
3	5.880	4.025	39.85	0.9275	575.06	0.9641	1.677
4	5.910	4.040	40.52	0.9350	592.14	0.9851	1.664
5	5.910	4.065	40.26	0.9225	581.93	0.9795	1.683
6	5.890	4.050	39.43	0.9200	566.40	0.9500	1.677
7	5.950	4.070	41.35	0.9400	611.77	1.0015	1.637
8	5.895	4.015	40.29	0.9400	589.55	0.9730	1.650
9	5.920	4.060	40.95	0.9300	597.02	0.9919	1.661
10	5.950	4.105	39.91	0.9225	581.50	0.9763	1.679
11	5.890	4.055	41.17	0.9175	590.08	0.9962	1.688
12	5.910	4.040	40.72	0.9350	595.06	1.0037	1.687
13	5.880	4.035	40.70	0.9225	584.75	0.9855	1.685
14	5.945	4.060	40.72	0.9425	603.15	1.0100	1.675
15	6.075	4.110	40.45	0.9825	635.82	1.0333	1.625
16	5.945	4.045	41.30	0.9500	615.69	1.0009	1.626
17	5.930	4.050	40.75	0.9400	600.49	0.9999	1.665
18	5.915	4.070	40.74	0.9225	589.46	0.9957	1.689
19	5.925	4.050	41.29	0.9375	606.53	1.0039	1.655
20	5.915	4.030	39.84	0.9425	586.58	0.9787	1.668
21	5.895	4.030	39.26	0.9325	570.75	0.9491	1.663
22	5.995	4.110	38.60	0.9425	577.46	0.9392	1.626
23	5.910	4.035	39.75	0.9375	582.15	0.9638	1.656
24	5.940	4.050	39.87	0.9450	591.24	0.9704	1.641
25	5.920	4.100	40.34	0.9100	577.78	0.9747	1.687
Average	5.92 <u>+</u> .04	4.05 <u>+</u> .04	40.43 <u>+</u> .74	0.936 <u>+</u> .018	592.9 <u>+</u> 17.2	0.9850 <u>+</u> .0216	1.662 <u>+</u> .027

Table 3.2The Table shows measured and calculated properties of M7 propellant tubes from
mix 285.

Table 3.1 gives measured dimensions for 25 tubes. Table 3.2 gives in addition the weight and calculated web and density of each tube and the average values for all 25 tubes. The obtained average values have been used for the calculations of the burning rate.

The obtained average density of 1.662 g/cm³ is close to the theoretically calculated of 1.6779 g/cm³ given in (2).

3.1.2 M7 propellant mix 458

Figure 3.2 shows a picture of some of the received tubes from mix 458. Dimensions have been measured with regard to inner and outer diameter and length. These results are given in Table 3.3.

Figure 3.2 The picture shows some tubes from mix 458.

Tube	Diameter Outer	Diameter Outer	Average Diameter	Diameter Inner	Diameter Inner	Average Diameter	Length
N0.	top (mm)	bottom	Outer (mm)	top	bottom	Inner	(mm)
1		(mm)	(mm)	(mm)	(mm)	(mm)	
1	5.91	5.92	5.915	4.06	4.06	4.060	41.06
2	6.01	6.02	6.015	4.14	4.13	4.135	41.72
3	5.91	5.91	5.910	4.04	4.03	4.035	39.85
4	5.96	5.98	5.970	4.12	4.14	4.130	40.52
5	6.01	6.01	6.010	4.12	4.13	4.125	40.26
6	6.00	6.02	6.010	4.14	4.15	4.145	39.43
7	5.90	5.92	5.910	4.05	4.01	4.030	41.35
8	5.90	5.91	5.905	4.09	4.06	4.075	40.29
9	5.99	5.99	5.990	4.10	4.09	4.095	40.95
10	5.99	6.02	6.005	4.08	4.11	4.095	39.91
11	5.97	5.96	5.965	4.14	4.12	4.130	41.17
12	6.00	6.00	6.000	4.18	4.17	4.175	40.72
13	5.92	5.92	5.920	4.04	4.06	4.050	40.70
14	6.02	6.00	6.010	4.15	4.17	4.160	40.72
15	5.85	5.88	5.865	4.00	4.01	4.005	40.45
16	5.85	5.82	5.835	3.98	4.01	3.995	41.30
17	5.92	5.94	5.930	4.05	4.06	4.055	40.75
18	5.91	5.90	5.905	4.02	4.01	4.015	40.74
19	6.03	6.04	6.035	4.16	4.17	4.165	41.29
20	5.89	5.90	5.895	4.07	4.07	4.070	39.84
21	5.88	5.84	5.860	3.98	4.01	3.995	39.26
22	5.92	5.92	5.920	4.04	4.04	4.040	38.60
23	5.84	5.83	5.835	4.00	4.01	4.005	39.75
24	5.95	5.95	5.950	4.04	4.12	4.080	39.87
25	5.90	5.91	5.905	4.07	4.03	4.050	40.34
Average	5.94 <u>+</u> 0.06	5.94 <u>+</u> 0.06	5.94 <u>+</u> 0.06	4.07 <u>+</u> 0.06	4.08 <u>+</u> 0.06	4.08 <u>+</u> 0.06	40.43 <u>+</u> 0.74

Table 3.3The Table shows outer and inner diameter and length of M7 propellant tubes from
mix 458.

Tube No.	Average Outer Diameter (mm)	Average Inner Diameter (mm)	Length (mm)	WEB (mm)	Volume (mm ³)	Weight (g)	Density (g/cm ³)
1	5.915	4.060	41.06	0.9275	596.71	1.0169	1.704
2	6.015	4.135	41.72	0.94	625.26	1.0241	1.638
3	5.910	4.035	39.85	0.9375	583.61	0.9729	1.667
4	5.970	4.130	40.52	0.92	591.42	0.9878	1.670
5	6.010	4.125	40.26	0.9425	604.09	1.0266	1.699
6	6.010	4.145	39.43	0.9325	586.51	1.0238	1.746
7	5.910	4.030	41.35	0.94	606.89	0.9671	1.594
8	5.905	4.075	40.29	0.915	577.92	0.9694	1.677
9	5.990	4.095	40.95	0.9475	614.65	0.9736	1.584
10	6.005	4.095	39.91	0.955	604.68	0.9980	1.650
11	5.965	4.130	41.17	0.9175	598.98	1.0110	1.688
12	6.000	4.175	40.72	0.9125	593.87	0.9870	1.662
13	5.920	4.050	40.7	0.935	595.97	0.9800	1.644
14	6.010	4.160	40.72	0.925	601.71	1.0110	1.680
15	5.865	4.005	40.45	0.93	583.23	0.9847	1.688
16	5.835	3.995	41.3	0.92	586.69	0.9625	1.641
17	5.930	4.055	40.75	0.9375	599.19	0.9678	1.615
18	5.905	4.015	40.74	0.945	599.91	1.0051	1.675
19	6.035	4.165	41.29	0.935	618.55	1.0277	1.661
20	5.895	4.070	39.84	0.9125	569.05	0.9824	1.726
21	5.860	3.995	39.26	0.9325	566.73	0.9746	1.720
22	5.920	4.040	38.6	0.94	567.67	0.9494	1.672
23	5.835	4.005	39.75	0.915	562.18	1.0056	1.789
24	5.950	4.080	39.87	0.935	587.33	1.0040	1.709
25	5.905	4.050	40.34	0.9275	585.07	0.9759	1.668
Average	5.94 <u>+</u> 0.06	4.08 <u>+</u> 0.06	40.43 <u>+</u> 0.74	0.93 <u>+</u> 0.01	592.32 <u>+</u> 16.16	0.9916 <u>+</u> 0.0227	1.675 <u>+</u> 0.045

Table 3.4The Table shows the dimensions, web, weight and density for mix 458 M7 propellant
tubes.

In Table 3.4 are the measured inner and outer diameter, length and weight together with the calculated web and density for 25 tubes from mix 458 given. Obtained average density 1.675 g/cm³ is close to the theoretically calculated of 1.6779 g/cm³ given in (2) and slightly higher than for mix 285.

3.2 CV firings

3.2.1 Mix 458

The received propellant was divided into three samples of different weight corresponding to loading density of 0.1, 0.15 and 0.2 g/cm³ to determine the impetus. All firings were performed at 21° C.

3.2.1.1 Load density 0.1 g/cm³

The first firing was performed with 70.11 g propellant. The pressure-time curve is shown in Figure 3.3. The maximum pressure was registered at 1142.5 bars or at 1139 bars (Appendix A.1) when automatic selected by the program used for burn rate calculations (4).

Figure 3.3 The Figure shows the pressure time curve for firing CV-101 with 70.11 g M7 propellant from mix 458.

3.2.1.2 Load density 0.15 g/cm³

The second firing with M7 propellant form mix 458 was performed with 105.15 g or a loading density of 0.1502 g/cm³. Figure 3.4 shows the pressure-time curve with a maximum pressure of 1816 bars. The report in Appendix A.2 gives a maximum pressure of 1820 bars. The obtained pressure – time curve is smooth with no spikes.

Figure 3.4 The Figure shows the pressure time curve for firing CV-102 with 105.15 g M7 propellant from mix 458.

3.2.1.3 Load density 0.20 g/cm³

The last firing with M7 propellant from mix 458 was performed with 140.95 g or a loading density of 0.2014 g/cm^3 . The obtained maximum pressure given in Figure 3.5 of 2588 bars is

Figure 3.5 The Figure shows the pressure time curve for firing CV-103 with 140.85 g M7 propellant from mix 458.

slightly lower than the pressure given in Appendix A.3 of 2603 bars. As seen from the pressure time curve in Figure 3.5 there are some ringing in the pressure curve at the maximum pressure. We did therefore select manually the average between maxima and minima of the ringing curve.

3.2.1.4 All firings with mix 458

Figure 3.6 shows all closed vessel firings with M7 propellant from mix 458. The drop in pressure after the maximum pressure has been reached is equal for all firings showing that the closed vessel has no leakage and that the drop in pressure is governed by cooling of the combustion gasses.

Figure 3.6 The Figure shows the pressure time curves for the three close vessel firings with M7 propellant from mix 458.

3.2.2 Impetus and Co-volume

Necessary properties from the firings with M7 propellant from mix 458 to experimentally determining the Impetus and co-volume are summarized in Table 3.5. These properties are found by plotting maximum pressure divided by loading density as function of maximum pressure.

Firing No	Weight Loading Density		Maximum Pressure	Pmax/Loading Density	
	(g)	(g/cm ³)	(MPa)	(MPa/g/cm ³)	
CV-101	70.11	0.1002	114.25	1140.71	
CV-102	105.16	0.1502	181.6	1208.82	
CV-103	140.95	0.2014	258.8	1285.28	

Table 3.5The Table shows properties of the closed vessel firings with M7 propellant from mix458 to experimentally determining the Impetus.

Figure 3.7 The Figure shows the plot of P_{max} /loading density as function of P_{max} for M7 propellant mix 458.

This is shown in Figure 3.7 for M7 propellant from mix 458. The straight line between these experimentally determined points is drawn and the Impetus is given by interception of the Y-axis and the co-volume as the gradient. For M7 propellant mix 458 we get an Impetus of 1026.7 J/g and a co-volume of $0.9999 \text{ cm}^3/\text{g}$.

3.2.3 Mix 285

3.2.3.1 Load density 0.1 g/cm³

Figure 3.8 shows the pressure time curve for CV-104 with 70.79 g M7 propellant from mix 285. At the maximum pressure there is a smooth signal without any ringing with maximum pressure of 1147.5 bars. In Appendix A.4 the program used to calculate the burning rate selects a maximum pressure of 1150bars.

Figure 3.8 The Figure shows the pressure time curve for firing CV-104 with 70.79 g M7 propellant from mix 285.

3.2.3.2 Load density 0.15 g/cm³

Figure 3.9 shows the pressure time curve for CV-105 with 105.31 g M7 propellant from mix 285. At the maximum pressure there is not a smooth signal but ringing and the selected maximum pressure of 1816 bars is the average of the minimum and maximum of the signal. In Appendix A.5 the program used to calculate the burning rate selects a maximum pressure of 1839 bars which is too high.

Figure 3.9 The Figure shows the pressure time curve for firing CV-105 with 105.31 g M7 propellant from mix 285.

3.2.3.3 Load density 0.20 g/cm³

Figure 3.10 shows the pressure time curve for CV-106 with 140.11 g M7 propellant from mix 285. At the maximum pressure there is not a smooth signal but ringing and the selected maximum pressure of 2575 bars is the average of the minimum and maximum of the signal. In Appendix A.6 the program used to calculate the burning rate selects a maximum pressure of 2596 bars which is too high. For this firing the closed vessel starts to leak after the propellant had burned.

Figure 3.10 The Figure shows the pressure time curve for firing CV-106 with 140.11 g M7 propellant from mix 285.

3.2.3.4 All firings with mix 285

Figure 3.11 shows a plot of all firings with M7 mix 285 propellant. For the firings with the two highest loading densities the pressure measurement shows signals that are disturbed by waves in the closed vessel. In addition is the leakage clearly seen by that the drop in maximum pressure for CV-106 is significantly faster than what is observed by only cooling of the combustion products.

Figure 3.11 The Figure shows the pressure time curves for all closed vessel firings with M7 propellant from mix 285.

3.2.4 Impetus and Co-volume for mix 285

Necessary properties from the firings with M7 propellant from mix 285 to experimentally determining the Impetus and co-volume are summarized in Table 3.6. These properties are found by plotting maximum pressure divided by loading density as function of maximum pressure.

Firing No	Weight Loading Density		Maximum Pressure	Pmax/Loading Density	
	(g)	(g/cm ³)	(MPa)	(MPa/g/cm ³)	
CV-10	70.79	0.1011	114.75	1134.69	
CV-10	105.31	0.1504	181.6	1207.10	
CV-10	140.11	0.2002	257.5	1286.49	

Table 3.6The Table shows the necessary properties for experimentally determination of co-
volume and impetus for M7 propellant mix 285.

This is shown in Figure 3.12 for M7 propellant from mix 285. The straight line between these experimentally determined points is drawn and the Impetus is given by interception of the Y-axis and the co-volume as the gradient. For M7 propellant mix 285 we get an Impetus of 1013.2 J/g and a co-volume of 1.063 cm^3 /g.

Figure 3.12 The Figure shows the Impetus and co-volume for M7 propellant mix 285.

3.2.5 Comparison of pressure-time curves for the two mixes

3.2.5.1 Load density 0.1 g/cm³

In Figure 3.13 is shown the pressure –time curves for CV-101 and CV-104 both with loading density of 0.1 g/cm³. The Figure shows that there are only minor differences between these two curves. CV-104 with propellant from mix 285 has a slightly faster pressure increase than CV-101.

Figure 3.13 The Figure shows a comparison of the pressure time curves with loading density 0.1 g/cm^3 of M7 propellant from mix 285 and 458.

3.2.5.2 Load density 0.15 g/cm³

In Figure 3.14 is shown the pressure –time curves for CV-102 and CV-105 both with loading density of 0.15 g/cm³. The Figure shows that there are no differences between these two curves before the maximum pressure is reached. At the maximum pressure CV-102 with propellant from mix 485 has a smooth curve while firing CV-105 has a ringing signal due to some waves in the closed vessel.

Figure 3.14 The Figure shows a comparison of the pressure time curves with loading density 0.15 g/cm³ of M7 propellant from mix 285 and 458.

3.2.5.3 Load density 0.20 g/cm³

In Figure 3.15 the pressure –time curves is shown for CV-103 and CV-106 both with loading density of 0.2 g/cm³. The Figure shows that there are no differences between these two curves before the maximum pressure is reached. At the maximum pressure both CV-103 with propellant from mix 485 and CV-106 with propellant from mix 285 has ringing signal due to some waves in the closed vessel. For CV-106 there are waves of different frequencies.

Figure 3.15 The Figure shows a comparison of the pressure time curves with loading density 0.20 g/cm³ of M7 propellant from mix 285 and 458.

3.2.5.4 All firings with mix 285 and mix 458 M7 propellant

Figure 3.16 summarizing all closed vessel firings with both mix 285 and mix 458 M7 propellants. Pressure Time Curves for all Closed Vessel Firings with M7 Propellants

Figure 3.16 The Figure shows pressure time curves for all closed vessel firings with M7 propellant from mix 285 and mix 458.

3.2.5.5 Comparing Impetus for M7 propellant mix 285 and mix 458

The maximum pressure divided by loading density as function of maximum pressure for both M7 mixes tested in this report is shown in fig. 3.17. The obtained Impetus for mix 458 of 1026.7 J/g is 13.5 J higher than for mix 285. With regard to co-volume the propellant from mix 285 0.064 cm^3/g has a higher co-volume than the propellant from mix 458.

Figure 3.17 The Figure shows the plot of P_{max} /loading density as function of P_{max} for M7 propellant for mix 285 and mix 458.

Obtained results with regard to Impetus and Co-volume for tested mixes with M7 propellant are of the same magnitude as obtained for earlier tested M7 propellant mixes (3, 5-6).

3.3 Burning rate

3.3.1 Mix 458

When we have the pressure-time data and in addition know the dimensions of the propellant grains the burn rate of the propellant can be calculated. In our case we have tubes cut to a length of ~ 40 mm. All dimensions of the M7 tubes have been measured and are given in 3.1. To calculate the burn rate have a PC-program developed at FFI has been used (4).

3.3.1.1 CV-101 loading density 0.10 g/cm³

In Appendix A.1.1 is given the properties and condition of the CV-101 used to calculate the burn rate. Figure 3.18 gives the experimentally obtained burn rate curve when an averaging time of 80 μ s is used. In addition the figure shows the smoothed burn rate curve. Normally one wants to find a burn rate equation which fit to the experimentally found burn rate curve. The burn rate can be

described by different equations. From the program we use three different equations are obtained. These are all given in Table 3.7 with accompanying constants, coefficients and exponents. In addition the program performs the fit of the equations by either selecting constant pressure intervals or given pressure intervals. This choice may for some propellants have influence on the obtained equations. The increase in pressure depends on the burn rate and the loading density and will therefore give different number of point in the calculations. In Figure 3.18 the experimentally measured burn rate curve for firing CV-101 has been given together with the smoothed burn rate curve. From the Figure 3.18 one can see that for the min part of the pressure range the burn rate curve is close to a straight line. However for the first 100 bars the burn rate curve has a different slope. The pressure range used for fitting of burn rate equations has therefore been split into two pressure ranges. For this firing the first pressure range is from 25 to 90 bars the second from 90 to 800 bars. The burn rate calculation results for CV-101 are given in Appendix A.1.2. Table 3.7 summarizing the obtained constants, coefficients and exponents for the equation and conditions we use in our fitting process.

Figure 3.18 The Figure shows the burn rate curves for firing CV-101 with 75.11 g M7 propellant from mix 458.

	Pressure	Bur	Burn Rate equations calculated from given pressure intervals								
Firing	interval	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		r =	$\mathbf{r} = \mathbf{bP}^{\mathbf{n}}$		$\mathbf{r} = \mathbf{a} + \mathbf{bP}^{\mathbf{n}}$				
N0.	(bars)	а	b	b	n	а	b	n			
CW 101	25-90	-0.1629	0.03185	0.01622	1.14241	-0.2281	0.03742	0.9696			
CV-101	90-800	1.5915	0.01283	0.10674	0.69580	1.11404	0.02722	0.89141			
		Burn	Burn Rate equations calculated with constant pressure intervals								
CV-101	25-90	-0.1509	0.03171	0.01687	1.13277	-0.3774	0.05644	0.88786			
	90-800	1.6256	0.01276	0.09691	0.71236	1.3005	0.02016	0.93518			

Table 3.7The Table shows the calculated burn rate constants, coefficients and exponents for
different burn rate equations fitted the experimental burn rate curve for CV-101.

Figure 3.19 and 3.20 give plots of the burn rate curves according to the burn rate equations in Table 3.7 when respectively given and constant pressure intervals have been selected.

Experimental and Calculated Burn Rate Curves for CV-101 with M7 Mix 458 Propellant

Figure 3.19 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by given pressure intervals for CV-101 with M7 mix 458 propellant.

Figure 3.20 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by constant pressure intervals for CV-101 with M7 mix 458 propellant.

From Figure 3.19 and 3.20 one will see that the equations calculated from constant pressure intervals have best fit with the experimentally burn rate curve. And in addition that the equation $r=bP^n$ has poorer fit than the equations r=a+bP and $r=a+bP^n$ to the experimentally burn rate curve.

3.3.1.2 CV-102 loading density 0.15 g/cm³

Figure 3.21 shows the experimental burn rate curve for CV-102 obtained by the use of averaging time of 53 μ s and the propellant properties given in Appendix A.2.1. In addition fig. 3.21 contains the smoothed burn rate curve. Due to the change in slope of the burn rate curve the pressure range used to calculate burn rate equations has been spit into two pressure ranges, 25-100 and 100-1200 bars. Table 3.8 gives the results for obtained burn rate equations with regard to constants, coefficients and exponents.

Figure 3.21 The Figure shows the burn rate curves for firing CV-102 with 105.16 g M7 propellant from mix 458.

F •••	Pressure	Bur	Burn Rate equations calculated from given pressure intervals							
Firing	interval	r = a	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		$\mathbf{r} = \mathbf{bP}^{\mathbf{n}}$		$\mathbf{r} = \mathbf{a} + \mathbf{bP}^{\mathbf{n}}$			
N0.	(bars)	а	b	b	n	а	b	n		
CN 100	25-100	-0.4077	0.03178	0.00478	1.39832	-0.1631	0.01193	1.2030		
CV-102	100-1200	1.6724	0.01263	0.08453	0.73771	1.00346	0.02867	0.88875		
		Burn Rate equations calculated with constant pressure intervals								
CV-102	22-90	-0.3991	0.03174	0.00533	1.37145	-0.3193	0.02294	1.06783		
	100-1200	1.7503	0.01251	0.07593	0.75521	1.0502	0.02697	0.89606		

Table 3.8The Table shows the calculated burn rate constants, coefficients and exponents for
different burn rate equations fitted the experimental burn rate curve for CV-102.

For CV-102 the best fit to the experimentally burn rate curve for the calculated burn rate curves is obtained with given pressure intervals and the equations, r=a+bP and $r=a+bP^n$.

Figure 3.22 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by given pressure intervals for CV-102 with M7 mix 458 propellant.

Figure 3.23 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by constant pressure intervals for CV-102 with M7 mix 458 propellant.

3.3.1.3 CV-103 loading density 0.20 g/cm³

Figure 3.24 shows the experimentally burn rate curve for CV-103 obtained by use of averaging time of 40 μ s and the propellant properties given in Appendix A.3.1. In addition Figure 3.2.4 contains the smoothed burn rate curve. Calculation of burn rate equations has been split into two pressure ranges, 22-100 and 100-1750 bars. Table 3.9 gives the results for obtained burn rate equations with regard to constants, coefficients and exponents.

Figure 3.24 The Figure shows the burn rate curves for firing CV-103 with 140.95g M7 propellant from mix 458.

	Pressure	Burn Rate equations calculated from given pressure intervals						rvals		
Firing	interval	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		r =	$\mathbf{r} = \mathbf{bP}^{\mathbf{n}}$		$\mathbf{r} = \mathbf{a} + \mathbf{bP}^{\mathbf{n}}$			
NO.	(bars)	а	b	b	n	а	b	n		
CN 102	22-100	-0.4555	0.03095	0.00241	1.54715	-0.1822	0.00916	1.25466		
CV-103	100-1750	1.9644	0.01210	0.07730	0.75508	0.5893	0.04523	0.82692		
		Burn Rate equations calculated with constant pressure intervals								
CV-103	22-100	-0.4473	0.03091	0.00296	1.49489	-0.2684	0.01461	1.15545		
	100-1750	2.2381	0.01182	0.07131	0.76773	0.67143	0.04166	0.83806		

Table 3.9The Table shows the calculated burn rate constants, coefficients and exponents for
different burn rate equations fitted the experimental burn rate curve for CV-103.

For CV-103 the equation with the best fit to the experimentally burn rate curve is obtained for the equation $r=a + bP^n$ independent of the selected pressure intervals have been constant or given.

Figure 3.25 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by given pressure intervals for CV-103 with M7 mix 458 propellant.

Figure 3.26 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by constant pressure intervals for CV-103 with M7 mix 458 propellant.

3.3.1.4 All firings with mix 458

Figure 3.27 shows smoothed experimentally calculated burn rate curves for the three CV-firings with M7 propellant from mix 458. The three curves show that the burn rate is equal and independent of loading density. Table 3.10 gives burn rate equations calculated from given pressure ranges and Table 3.11 for pressure ranges with constant intervals.

Figure 3.27 The Figure shows the burn rate curves for closed vessel firings with M7 propellant from mix 458.

E!!	Pressure	Burn Rate equations calculated from given pressure intervals								
Firing	interval	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		r =	bP ⁿ	$\mathbf{r} = \mathbf{a} + \mathbf{bP}^{\mathbf{n}}$				
190.	(bars)	а	b	b	n	а	b	n		
CV-101	25-90	-0.1629	0.03185	0.01622	1.14241	-0.2281	0.03742	0.9696		
	90-800	1.5915	0.01283	0.10674	0.69580	1.11404	0.02722	0.89141		
CV 102	25-100	-0.4077	0.03178	0.00478	1.39832	-0.1631	0.01193	1.2030		
CV-102	100-1200	1.6724	0.01263	0.08453	0.73771	1.00346	0.02867	0.88875		
CW 102	22-100	-0.4555	0.03095	0.00241	1.54715	-0.1822	0.00916	1.25466		
CV-103	100-1750	1.9644	0.01210	0.07730	0.75508	0.5893	0.04523	0.82692		

Table 3.10Burn rate equations for different firings of M7 propellant mix 458, given pressure
intervals.

Firing	Pressure	Burn Rate equations calculated with constant pressure intervals							
No	interval	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		r =	$r = bP^n$		$\mathbf{r} = \mathbf{a} + \mathbf{bP}^{\mathbf{n}}$		
110.	(bars)	а	b	b	n	а	b	n	
CV-101	25-90	-0.1509	0.03171	0.01687	1.13277	-0.3774	0.05644	0.88786	
C V -101	90-800	1.6256	0.01276	0.09691	0.71236	1.3005	0.02016	0.93518	
CV-102	22-90	-0.3991	0.03174	0.00533	1.37145	-0.3193	0.02294	1.06783	
CV-102	100-1200	1.7503	0.01251	0.07593	0.75521	1.0502	0.02697	0.89606	
CV-103	22-100	-0.4473	0.03091	0.00296	1.49489	-0.2684	0.01461	1.15545	
	100-1750	2.2381	0.01182	0.07131	0.76773	0.67143	0.04166	0.83806	

Table 3.11Burn rate equations for different firings of M7 propellant mix 458, constant pressure
intervals.

3.3.2 Mix 285

3.3.2.1 CV-104 loading density 0.10 g/cm³

Figure 3.28 shows the experimentally burn rate curve for CV-104 obtained by use of averaging time of 79 μ s and the propellant properties given in Appendix A.4.1. Figure 3.2.8 in addition contains the smoothed burn rate curve. Calculation of burn rate equations has been split into two pressure ranges, 22-88 and 88-800 bars. Table 3.12 gives the results for obtained burn rate equations with regard to constants, coefficients and exponents.

Figure 3.28 The Figure shows the burn rate curves for firing CV-104 with 70.79 g M7 propellant from mix 285.

	Pressure	Bur	rn Rate equ	ations cal	culated fro	m given pı	essure inte	rvals	
Firing	interval	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		r =	$\mathbf{r} = \mathbf{bP}^{\mathbf{n}}$		$\mathbf{r} = \mathbf{a} + \mathbf{bP}^{\mathbf{n}}$		
No.	(bars)	а	b	b	n	а	b	n	
CTV 104	22-88	-0.2517	0.03463	0.01175	1.23291	-0.0756	0.01698	1.15266	
CV-104	80-800	1.6222	0.01316	0.11156	0.69274	0.9733	0.03474	0.86035	
		Burn	n Rate equa	ations calcu	lated with	constant p	oressure int	ervals	
CV-104	22-80	-0.2447	0.03458	0.01209	1.22594	-0.2691	0.03501	1.00041	
	80-800	1.6806	0.01303	0.10257	0.70722	1.00835	0.03299	0.86791	

Table 3.12The Table shows the calculated burn rate constants, coefficients and exponents for
different burn rate equations fitted the experimental burn rate curve for CV-104.

Figure 3.29 shows plot of calculated burn rate curves from given pressure intervals in addition to the experimental burn rate curve. Best fit is obtained for the equations $r=a+bP^{n}$ and $r=a+bP^{n}$ and

the last one is slightly better than the first one. Figure 3.30 gives the same curves when constant pressure intervals have been used for the calculations. And as for the given pressure intervals the best fit to the experimentally burn rate curve is obtained for the equation $r=a+bP^n$.

Figure 3.29 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by given pressure intervals for CV-104 with M7 mix 458 propellant.

Figure 3.30 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by constant pressure intervals for CV-104 with M7 mix 458 propellant.

3.3.2.2 CV-105 loading density 0.15 g/cm³

Figure 3.31 shows the experimentally burn rate curve for CV-105 obtained by use of averaging time of 53 μ s and the propellant properties given in Appendix A.5.1. In addition contains Figure 3.31 the smoothed burn rate curve. Calculation of burn rate equations has been spitted into two pressure ranges, 25-100 and 100-1200 bars. Table 3.13 gives the results for obtained burn rate equations with regard to constants, coefficients and exponents.

Figure 3.31 The Figure shows the burn rate curves for firing CV-105 with105.31 g M7 propellant from mix 285.

	Pressure	Bur	n Rate equ	ations cal	culated fro	m given pr	essure inte	rvals
Firing	interval	r = a	ı+ bP	r =	bP ⁿ		$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}^{\mathbf{r}}$	1
No.	(bars)	а	b	b	n	а	b	n
CTV 105	22-90	-0.4251	0.03310	0.00330	1.50237	-0.3401	0.02306	1.07774
CV-105	90-1300	1.6948	0.01264	0.08328	0.74145	0.84740	0.03408	0.86480
		Burn	n Rate equa	ations calcu	lated with	constant p	oressure int	ervals
CV-105	22-90	-0.4037	0.03283	0.00431	1.43489	-0.4844	0.03899	0.96856
	90-1300	1.8206	0.01247	0.07510	0.75826	0.91034	0.03146	0.87606

Table 3.13The Table shows the calculated burn rate constants, coefficients and exponents for
different burn rate equations fitted the experimental burn rate curve for CV-105.

Figure 3.32 and 3.33 shows the calculated burn rate curves for respectively given and constant pressure intervals in addition to the experimentally smoothed burn rate curve. Best fit to the

experimentally smoothed burn rate curve is obtained with for the calculated curves from equation $r=a+bP^{n}$.

Figure 3.32 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by given pressure intervals for CV-105 with M7 mix 285 propellant.

Figure 3.33 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by constant pressure intervals for CV-105 with M7 mix 258 propellant.

3.3.2.3 CV-106 loading density 0.20 g/cm³

Figure 3.34 shows the experimentally burn rate curve for CV-106 obtained by use of averaging time of 40 μ s and the propellant properties given in Appendix A.6.1. Figure 3.34 in addition contains the smoothed burn rate curve. Calculation of burn rate equations has been split into two pressure ranges, 24-100 and 100-1750 bars. Table 3.14 gives the results for obtained burn rate equations with regard to constants, coefficients and exponents.

Figure 3.34 The Figure shows the burn rate curves for firing CV-106 with140.11 g M7 propellant from mix 285.

	Pressure	Bur	rn Rate equ	ations cal	culated fro	m given pı	essure inte	rvals
Firing	interval	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		r =	$\mathbf{r} = \mathbf{bP}^{\mathbf{n}}$		$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}^{\mathbf{r}}$	1
No.	(bars)	a	b	b	n	а	b	n
CTV 106	24-100	-0.3002	0.03166	0.00717	1.31732	-0.4503	0.00451	0.93356
CV-106	100-1750	2.1022	0.01203	0.08685	0.73868	1.05112	0.03287	0.86880
		Burn	Rate equa	tions calcu	lated with	constant p	oressure int	ervals
CV-106	24-100	-0.2476	0.03096	0.00888	1.26486	-0.7923	0.10206	0.77429
	100-1750	2.3471	0.01179	0.07775	0.75600	0.93886	0.03687	0.85343

Table 3.14The Table shows the calculated burn rate constants, coefficients and exponents for
different burn rate equations fitted the experimental burn rate curve for CV-106.

Figure 3.35 and 3.36 shows the calculated burn rate curves for respectively given and constant pressure intervals together with the smoothed experimentally burn rate curve.

Best fit to the smoothed experimentally burn rate curve is obtained with the calculated curves from equation $r=a+bP^n$.

Figure 3.35 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by given pressure intervals for CV-106 with M7 mix 285propellant.

Figure 3.36 The Figure shows the experimental smoothed burn rate curve and the burn rate curves calculated from equations determined by constant pressure intervals for CV-106 with M7 mix 285 propellant.

3.3.2.4 All firings with M7 mix 285 Propellant

Figure 3.37 shows the smoothed experimentally obtained burn rate curves for the three different loading densities tested for M7 propellant mix 285. All three curves give the same burn rate.

Figure 3.37 The Figure shows the smoothed burn rate curves for closed vessel firings with M7 propellant from mix 285.

Table 3.15 and 3.16 summarizing the burn rate equations obtained from respectively given and constant pressure intervals.

Fining	Pressure	Burn Rate equations calculated from given pressure intervals						
riring No	interval	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		$\mathbf{r} = \mathbf{bP}^{\mathbf{n}}$		$\mathbf{r} = \mathbf{a} + \mathbf{bP}^{\mathbf{n}}$		
INU.	(bars)	а	b	b	n	а	b	n
CV 104	22-88	-0.2517	0.03463	0.01175	1.23291	-0.0756	0.01698	1.15266
CV-104	80-800	1.6222	0.01316	0.11156	0.69274	0.9733	0.03474	0.86035
CV 105	22-90	-0.4251	0.03310	0.00330	1.50237	-0.3401	0.02306	1.07774
CV-105	90-1300	1.6948	0.01264	0.08328	0.74145	0.84740	0.03408	0.86480
CV-106	24-100	-0.3002	0.03166	0.00717	1.31732	-0.4503	0.00451	0.93356
	100-1750	2.1022	0.01203	0.08685	0.73868	1.05112	0.03287	0.86880

Table 3.15 Burn rate equations for the firings of M7 propellant mix 285 calculated with given pressure intervals.

Fining	Pressure	Burn Rate equations calculated with constant pressure intervals							
rning No	interval	$\mathbf{r} = \mathbf{a} + \mathbf{b}\mathbf{P}$		$\mathbf{r} = \mathbf{bP}^{\mathbf{n}}$		$\mathbf{r} = \mathbf{a} + \mathbf{bP}^{\mathbf{n}}$			
INU.	(bars)	a	b	b	n	а	b	n	
CV 104	22-80	-0.2447	0.03458	0.01209	1.22594	-0.2691	0.03501	1.00041	
CV-104	80-800	1.6806	0.01303	0.10257	0.70722	1.00835	0.03299	0.86791	
CV 105	22-90	-0.4037	0.03283	0.00431	1.43489	-0.4844	0.03899	0.96856	
CV-105	90-1300	1.8206	0.01247	0.07510	0.75826	0.91034	0.03146	0.87606	
CV-106	24-100	-0.2476	0.03096	0.00888	1.26486	-0.7923	0.10206	0.77429	
	100-1750	2.3471	0.01179	0.07775	0.75600	0.93886	0.03687	0.85343	

Table 3.16Burn rate equations for different firings of M7 propellant calculated with constant
pressure intervals.

3.3.3 Comparison between mix 285 and 458

3.3.3.1 All firings

In Figure 3.38 experimentally smoothed burn rate curves are given for all 6 CV-firings with M7 propellant performed in this report. Within the reproducibility of closed vessel firings the burn rate curves for the two different propellant mixes are equal.

Figure 3.38 The Figure shows the burn rate curves for all firing with both mix 285 and 458 M7 propellant.

3.3.3.2 Loading density 0.10 g/cm³

Figure 3.38 shows the smoothed experimental burn rate curves for firings with loading density 0.10 g/cm^3 . The burn rate for mix 285 is slightly higher than for mix 458 in the pressure range 100 to 800 bars.

Figure 3.39 The Figure shows a comparison of the burn rate curves at loading density 0.1 g/cm³ for mix 285 and 458.

3.3.3.3 Loading density 0.15 g/cm³

Figure 3.40 shows the smoothed experimentally burn rate curves for firings with loading density 0.15 g/cm^3 . The burn rate for mix 285 and mix 458 is identical for this loading density.

Figure 3.40 The Figure shows a comparison of the burn rate curves at loading density 0.15 g/cm^3 for mix 285 and 458.

3.3.3.4 Loading density 0.20 g/cm³

Figure 3.41 shows the smoothed experimental burn rate curves for firings with loading density 0.20 g/cm^3 . The burn rate for mix 285 and mix 458 are identical for this loading density. The differences in burn rate curves is less than can be expected between duplicated firings with the same mix.

Figure 3.41 The Figure shows a comparison of the burn rate curves at loading density 0.20 g/cm^3 for mix 285 and 458.

3.4 Calorimeter measurements

3.4.1 Mix 285

The M7 propellant mix 285 was tested in a Parr Calorimeter for determination of the energy content when burned in oxygen atmosphere. Two samples of 0.5175 g and 0.4656 g were tested. The result report for the tested samples is given in Figure 3.42 and 3.43. The obtained energy was 2037.80 cal/g and 2033.85 cal/g respectively. This gives an average energy of 2035.8 cal/g.

Par	630	00 Calorime Report	ter
Sample ID:	285-1M7	Mode:	Determination
Type:	Final	Date/Time:	07/03/12 08:11:55
Sample Weight:	0.5175	Method:	Equilibriun
Spike Weight:	0.0000	Bomb ID:	
Fuse:	50.0000	EE Value:	940.000
Acid:	8.0000	Sulfur:	0.000
Jacket Temperature:	29.9892	Initial Temp.:	29.773
Temperature Rise:	1.1836		
		Gross Heat:	2037.795
			cal/
Run List Home			

Figure 3.42 Calorimeter report for M7 mix 285 propellant tested in oxygen atmosphere.

Part	630	0 Calorime Report	ter
Sample ID:	285-M72	Mode:	Determination
Туре:	Final	Date/Time:	07/03/12 08:33:16
Sample Weight:	0.4656	Method:	Equilibrium
Spike Weight:	0.0000	Bomb ID:	1
Fuse:	50.0000	EE Value:	940.0000
Acid:	8.0000	Sulfur:	0.0000
Jacket Temperature:	30.0118	Initial Temp.:	29.7082
Temperature Rise:	1.0691		
		Gross Heat:	2033.8511 cal/g
			our g
Run List Home			

Figure 3.43 Calorimeter report for M7 mix 285 propellant tested in oxygen atmosphere.

3.4.2 Mix 458

For mix 458 two samples of 0.5050 g and 0.4883 g were tested. The result reports are given in Figure 3.44 and 3.45. The obtained energy for the two samples were 2054.27 cal/g and 2056.88

cal/g respectively, which gives an average energy of 2055.6 cal/g. Compared with the result for mix 285 this result is 20 cal/g higher.

Parr	630	00 Calorime Report	ter
Sample ID:	485-1M7	Mode:	Determination
Туре:	Final	Date/Time:	07/03/12 08:50:19
Sample Weight:	0.5050	Method:	Equilibrium
Spike Weight:	0.0000	Bomb ID:	1
Fuse:	50.0000	EE Value:	940.0000
Acid:	8.0000	Sulfur:	0.0000
Jacket Temperature:	29.9984	Initial Temp.:	29.7553
Temperature Rise:	1.1653		
		Gross Heat:	2054.2744
			cal/g
Run List Home			

Figure 3.44 Calorimeter report for M7 mix 458 propellant tested in oxygen atmosphere.

Parr	630	0 Calorim Report	eter
Sample ID:	485-2M7	Mode:	Determination
Туре:	Final	Date/Time:	07/03/12 09:11:19
Sample Weight:	0.4883	Method:	Equilibrium
Spike Weight:	0.0000	Bomb ID:	1
Fuse:	50.0000	EE Value:	940.0000
Acid:	8.0000	Sulfur:	0.0000
Jacket Temperature:	29.9979	Initial Temp.:	29.7999
Temperature Rise:	1.1302		
		Gross Heat:	2056.8767
			cal/g
Run List Home			

Figure 3.45 Calorimeter report for M7 mix 285 propellant tested in oxygen atmosphere.

References

- North Atlantic Council (1995):"STANAG 4115 (Edition 2): Definition and Determination of Ballistic Properties of Gun Propellants" AC/225-D/1330, 27th February.
- (2) Laurence E. Fried, W. Michael Howard, P Clark Souers (August 20, 1998): Cheetah 2.0 User's Manual, UCRL-MA-117541 Rev. 5, Lawrence Livermore National Laboratory.
- (3) Nevstad Gunnar Ove (February 21, 2008): "Testing of M7 propellant in closed vessel", FFI-rapport 2008/00470.
- (4) Eriksen Svein Walter (March 22, 1995):"PC-program for closed vessel test", FFI/NOTAT-95/01535
- (5) Nevstad Gunnar Ove (July 2, 2009): "Testing of two M7 propellant lots in closed vessel", FFI rapport 2009/01183.
- (6) Nevstad Gunnar Ove (July 2, 2009): "Testing of M7 propellant at different temperatures in closed vessel", FFI rapport 2009/01184.

Appendix A Result forms – calculations of burning rate equations

A.1 CV-101

A.1.1 Result form for CV-101

In Figure A.1 is given the result form the firing with loading density 0.1002 g/cm^3 of M7 propellant from mix 458. It contains the firing conditions and the properties of the propellant used in calculations of the burning rate.

ormat	View	Help					
*** *** ***	**************************************						
Fyr	ings	identitet= mo-101.asc					
Fyr	ings	dato= 19.6.12					
For	s>ks	temperatur= 21 gr C					
Kru	uttyp	be= miks 458					
Lac	detet	thet= 0.1002 g/cm3					
Ter	insat	s= 1 g svartkrutt					
Kru	uttet	s tetthet= 1.675 g/cm3	_				
Kov	olum	= 1.000 cm3/g					
Kru	uttge	eometri = etthull	-				
Ytt	:erdi	ameter = 0.5940 cm					
Inr	nerdi	ameter = 0.4080 cm					
Ler	ngde.	= 4.0430 cm					
ка]	libre	eringsfaktor= 500.00					
San	plin	ngstid 1 micsek					
Mic	ling	nstid					
Try	/kk-t	id-fil pt-101.pt					
Bre	ennha	stighetsfil rp-101.rp					
Dyr	namis	k livlighetsfil dl-101.dl					
Dyr	namis	k livlighetsfil.(dlp)= dlp-101.dl					
Pma	ix	= 1139 bar	_				
p(b	bar)	r(cm/sek) į p/pmax dl(1/(bar*sek)	0				
 2 3 4 5 6 7 8 9 7 8 9	200 300 500 500 700 300	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					

Figure A.1 The Figure shows the result form for firing CV-101 with M7 propellant from mix 458.

A.1.2 Calculations of burn rate equations

The calculation of the burn rate equations have been split into two pressure ranges since there is a break in the burn rate curve after 90 bars. ******* Give file name...... > rp-101.rpb Choose a pressure range between Pmin and Pmax Pmin:= 22 Pmax:= 1128 Give start pressure...... > 25The result is now written on the file omr.dat By given pressure intervals are after the equation: $r = a + b^*p$ -0.16294000 b= 0.03184952 a =By given pressure intervals are after the equation: $r = b^* p^{**} n$ 1.14240800 0.01622468 n= b =By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.03741659 n= -0.22811600 b= 0.96957390 a= With constant pressure intervals are after the equation: $r = a + b^*p$ -0.15094470 b= a= 0.03170830 With constant pressure intervals are after the equation: $r = b^*p^{**n}$ 0.01687348 n= b= 1.13277200 With constant pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.05644077 n= 0.88785730 -0.37736170 b= a =Result files: a1.dat, a2.dat, n1.dat, n2.dat, abc.dat and abc2.dat Give file name......>rp-101.rpb Choose a pressure range between Pmin and Pmax Pmin= 22 Pmax= 1128 The result is now written on the file omr.dat ***** By given pressure intervals are after the equation: $r = a + b^*p$ 1.59148200 b= 0.01282596 a= By given pressure intervals are after the equation: $r = b^* p^{**} n$ 0.10674100 n= 0.69580000 b =By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.02722269 n= 0.89140960 a= 1.11403700 b= With constant pressure intervals are after the equation: $r = a + b^*p$ 1.62559300 b= 0.01275610 a= With constant pressure interval are after the equation: $r = b^*p^{**n}$

A.2 CV-102

A.2.1 Result form

Figure A.2 gives the result form the firing with loading density 0.1502 g/cm^3 of M7 propellant from mix 458. It contains the firing conditions and the properties of the propellant used in calculations of the burning rate.

nat View Help			
****	*****	****	*****
*******	**************** CLOSED \	VESSEL TEST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fyringside	entitet	= mo-102	.asc
 Fýringsdat 	to	= 19.6.1	2
Fors>kster	mperatur	= _21 g	r_C
Kruttype.	• • • • • • • • • • • • • • • • • • •	= M1KS 4 _ 0 1507	28
Tennsats.		= 1 a sv	artkrutt
Kruttets 1	tetthet	= 1.675	g/⊆m3
Kovolum	• • • • • • • • • • • • • • • • • • • •	= 1.000	⊂m3/g
Kruttaeome	etri	= etthul	1
Ytterdiame	eter	= 0.5940	⊂m
Innerdiam	eter	= 0.4080	⊂m
Lengde	• • • • • • • • • • • • • • • • • • • •	= 4.0430	⊂m
Kalibrerin	asfaktor	= 500.0	0
Samplingst	tid	= 1 mic	šek
Midlingst	id	= 53 mi⊂	sek
Trykk_tid.			nt
Brennhast	iahetsfil	= pc 102	.rp
Dynamisk	livlighetsfil	= d1-102	.สโ
Dynamisk	li∨lighetsfil.(dlµ	o)= dlp-10	2.d1
Pmay		– 1870 h	ar
p(bar)	r(cm/sek)	l p/pmax	d](1/(bar*sek))
300	5.53	0.1	0.4278
400	6.80		0.3/0/
500	9 33		0.3377
700	10.58	0.5	0.3133
800	11.82	0.6	0.3073
900	13.06	0.7	0.2987
1000	14.27		0.2742
1200	16.43	U.9	0.2234
1300	17.30		
*****	******	******	*****

Figure A.2 The Figure shows the result form for firing CV-102 with M7 propellant from mix 458.

A.2.2 Calculations of urn rate equations

The calculation of the burn rate equations have been split into two pressure ranges since there is a break in the burn rate curve after 100+20 bars. Give file name...... > rp-102.rpb Choose a pressure range between Pmin and Pmax Pmin= 21 Pmax= 1805 Give start pressure...... > 25The result is now written on the file omr.dat By given pressure intervals are after the equation: $r = a + b^*p$ -0.40771030 b= 0.03177809 a =By given pressure intervals are after the equation: $r = b^*p^{**n}$ 0.00477659 n= 1.39832300 b= By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.01192946 n= -0.16308410 b= 1.20301500 a= With constant pressure intervals are after the equation: $r = a + b^*p$ -0.39909580 b= 0.03173872 a= With constant pressure intervals are after the equation: $r = b^*p^{**n}$ 0.00533088 n= 1.37144800 b= With constant pressure intervals are after the equation: $r = a + b^* p^{**} n$ -0.31927670 b= 0.02293613 n= 1.06782900 a =Result files: a1.dat, a2.dat, n1.dat, n2.dat, abc.dat and abc2.dat Give file name......>rp-102.rpb Choose a pressure range between Pmin and Pmax Pmin= 21 Pmax= 1805 The result is now written on the file omr.dat ***** By given pressure intervals are after the equation: $r = a + b^*p$ 1.67242900 b:= 0.01262971 a= By given pressure intervals are after the equation: $r = b^* p^{**} n$ 0.08452761 n= b =0.73771130 By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.02867016 n= 0.88746860 a= 1.00345800 b= With constant pressure intervals are after the equation: $r = a + b^*p$ 1.75027300 b= 0.01251806 a= With constant pressure interval are after the equation: $r = b^* p^{**} n$

b= 0.07593104 n= 0.75520990

A.3 CV-103

A.3.1 Result form CV-103

Figure A.3 gives the result form the firing with loading density 0.2014 g/cm^3 of M7 propellant from mix 458. It contains the firing conditions and the properties of the propellant used in calculations of the burning rate.

Notepad			
nat View Help			
********	**************************************	************** VESSEL TEST ***********	*****
Fyringsider Fyringsdato Fors>kstemp Kruttype Ladetetthet Tennsats	ntitet Deratur	= mo-103 = 19.6.1 = 21 g = miks 4 = 0.2014 = 1 g sv	.asc 2 r C 58 g/cm3 artkrutt
Kruttets te Kovolum	etthet	= 1.675 = 1.000	g/cm3 cm3/g
Kruttgeomet Ytterdiamet Innerdiamet Lengde	er	= etthul = 0.5940 = 0.4080 = 4.0430	
Kalibreringsfaktor = 500.00 Samplingstid = 1 micsek Midlingstid = 40 micsek			0 sek sek
Trykk-tid-fil pt-103.pt Brennhastighetsfil rp-103.rp Dynamisk livlighetsfil dl-103.dl Dynamisk livlighetsfil.(dlp)= dlp-103.dl			.pt .rp .dl 3.dl
Pma×		= 2603 b	ar
p(bar)	r(cm/sek)	p/pmax	dl(1/(bar*sek))
500 600 800 1100 1200 1400 1500 1700 1900	8.20 9.47 11.96 13.17 15.49 16.60 18.76 19.81 21.71 22.97	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	0.5140 0.3391 0.3168 0.3045 0.2942 0.2885 0.2813 0.2585 0.2041

Figure A.3 The Figure shows the result form for firing CV-103 with M7 propellant from mix 458

A.3.2 Calculations of burn rate equations

The calculation of the burn rate equations have been split into two pressure ranges since there is a break in the burn rate curve after 100 bars.

Give file name......>rp-103.rpb Choose a pressure range between Pmin and Pmax Pmin = 20 Pmax = 2579Give start pressure...... > 22 The result is now written on the file omr.dat By given pressure intervals are after the equation: $r = a + b^*p$ -0.45553880 b= 0.03095336 a =By given pressure intervals are after the equation: $r = b^* p^{**} n$ 0.00240754 n= 1.54715400 b= By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.00915813 n= -0.18221550 b= 1.25466200 a= With constant pressure intervals are after the equation: $r = a + b^*p$ -0.44725210 b= 0.03090996 a =With constant pressure intervals are after the equation: $r = b^*p^{**n}$ 0.00296439 n= 1.49488800 b= With constant pressure intervals are after the equation: r=a+b*p**n-0.26835130 b= 0.01461424 n= 1.15544600 a =Result files: a1.dat, a2.dat, n1.dat, n2.dat, abc.dat and abc2.dat Give file name......>rp-103.rpb Choose a pressure range between Pmin and Pmax Pmin= 20 Pmax= 2579 The result is now written on the file omr.dat By given pressure intervals are after the equation: $r = a + b^*p$ 1.96444300 b= 0.01210248 a= By given pressure intervals are after the equation: $r = b^*p^{**n}$ 0.07730529 n= 0.75508160 b =By given pressure intervals are after the equations $r = a + b^* p^{**} n$ 0.04523258 n= a= 0.58933270 b= 0.82691650 With constant pressure intervals are after the equation: $r = a + b^*p$ 2.23809800 b= 0.01181933 a= With constant pressure interval are after the equation: $r = b^*p^{**n}$

 $b = 0.07130960 \quad n = 0.76772810$

A.4 CV-104

A.4.1 Result form for CV-104

Figure A.4 gives the result form the firing with loading density 0.1504 g/cm^3 of M7 propellant from mix 285. It contains the firing conditions and the properties of the propellant used in calculations of the burning rate.

at Viev	v Help				

Fyri Fyri Fors Krut Lade Tenr	ngside ngsdat >kstem type tetthe sats	ntitet o peratur t	= mo-104.asc = 19.6.12 = 21 gr C = MIKS 285 = 0.1011 g/cm3 = 1 g svartkrutt		
Krut Kovo	tets t lum	etthet	= 1.662 g/cm3 = 1.000 cm3/g		
Krut Ytte Inne Leng	tgeome rdiame rdiame de	tri ter ter	= etthull = 0.5920 cm = 0.4050 cm = 4.0430 cm		
Kali Samp Midl	brerin lingst ingsti	gsfaktor id d	= 500.00 = 1 micsek = 79 micsek		
Tryk Brer Dyna Dyna	k-tid- nhasti misk l misk l	fil ghetsfil i∨lighetsfil i∨lighetsfil.(dl	= pt-104.pt = rp-104.rp = dl-104.dl p)= dlp-104.dl		
Pma>			= 1150 bar		
p(ba	r)	r(cm/sek)	p/pmax dl(1/(bar*sek))		
20 30 40 50 70 80 90	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.30 5.63 6.95 8.24 9.54 10.78 11.87 12.35	0.1 0.5987 0.2 0.4443 0.3 0.3885 0.4 0.3603 0.5 0.3444 0.6 0.3343 0.7 0.3250 0.8 0.3018		

Figure A.4 The Figure shows the result form for firing CV-104 with M7 propellant from mix 285.

A.4.2 Calculations of burn rate equations

The calculation of the burn rate equations have been split into two pressure ranges since there is a break in the burn rate curve after 80 bars.

Give file name......>rp-104.rpb Choose a pressure range between Pmin and Pmax Pmin= 21 Pmax= 1137 Give start pressure..... > 22The result is now written on the file omr.dat ********** By given pressure intervals are after the equation: $r = a + b^*p$ -0.25168150 b= 0.03462546 a= By given pressure intervals are after the equation: $r := b^* p^{**} n$ b= 0.01175179 n= 1.23290500 By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ -0.07550448 b= 0.01698388 n= 1.15266300 a= With constant pressure intervals are after the equation: $r = a + b^*p$ -0.24467860 b= 0.03457801 a= With constant pressure intervals are after the equation: $r = b^*p^{**n}$ b =0.01208775 n= 1.22593600 With constant pressure intervals are after the equation: $r = a + b^* p^{**} n$ -0.26914650 b= 0.03500557 n= 1.00040900 a= Result files: a1.dat, a2.dat, n1.dat, n2.dat, abc.dat and abc2.dat ****** Give file name...... > rp-104.rpb Choose a pressure range between Pmin and Pmax Pmin= 21 Pmax= 1137 Give stop pressure...... > 800 The result is now written on the file omr.dat By given pressure intervals are after the equation: $r = a + b^*p$ 1.62221400 b= 0.01315914 a= By given pressure intervals are after the equation: $r = b^*p^{**n}$ 0.11156130 n= 0.69273910 b= By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.97332850 b= 0.03473623 n= a= 0.86034550 With constant pressure intervals are after the equation: $r = a + b^*p$ a= 1.68058000 b= 0.01303745 With constant pressure intervals are after the equation: $r = b^*p^{**n}$ b= 0.10256700 n= 0.70722120

A.5 CV-105

A.5.1 Result form

Figure A.5 gives the result form the firing with loading density 0.1504 g/cm^3 of M7 propellant from mix 285. It contains the firing conditions and the properties of the propellant used in calculations of the burning rate.

mat	View Help					
そそそそそそそそそそそそそそそそそ、「」シューフ」「「コュー」」オーコー、そそそそそそそそそそそそそそそそそ						

F	yringside	ntitet	= mo-105.	asc		
F	yringsdat ors>kstem	0 peratur	= 19.6.12 = 21 ar	- C		
ĸ	ruttype	· · · · · · · · · · · · · · · · · · ·	= MIKS 28	35		
T	ennsats		= 0.1504 = 1 g sva	g/cm3 artkrutt		
- к	$K_{\text{ruttats}} = 1.662 \text{ afcm}^2$					
ĸ	ovolum		$\dots = 1.000$	im3/g		
ĸ	Kruttgeometri					
Y T	ítterdiame nnerdiame	ter ter	$\dots = 0.5920$ = 0.4050	⊂m ⊂m		
Ĺ	Lengde= 4.0430 cm					
ĸ	Kalibreringsfaktor= 500.00					
S M	Samplingstid = 1 micsek					
-						
B	rennhasti	ghetsfil	= pt-105.	.pc .rp		
D	Dynamisk lívlighetsfil= dl-105.dl Dynamisk livlighetsfil (dlp) = dlp-105 dl					
-			1020 6-			
Р -	ma×		= 1839 Da	ar 		
	(1	- ((l.)		-17 /1 //h		
р -	(bar) 	г(ст/sек)	p/pmax 	dl(1/(bar*sek))		
	300 400	5.55		0.5899		
	500	8.13	0.3	0.3382		
	600 700	9.42 10.68	0.4 0.5	0.3230		
	800	11.91	0.6	0.3068		
	1000	14.35	0.7	0.2975		
	1100	15.51	0.9	0.2211		
	1400	17.78				
76 76	• • • • • • • • • • • •	•••***************	• • • • • • • • • • • • • • • • • • •			

Figure A.5 The Figure shows the result form for the CV-105 firing with M7 propellant from mix 285.

A.5.2 Calculations of burn rate equations

The calculation of the burn rate equations have been split into two pressure ranges since there is a break in the burn rate curve after 90 bars. ******* Give file name...... > rp-105.rpb Choose a pressure range between Pmin and Pmax Pmin= 21 Pmax= 1821 Give start pressure...... > 22 The result is now written on the file omr.dat By given pressure intervals are after the equation: $r = a + b^*p$ -0.42507950 b= 0.03310236 a =By given pressure intervals are after the equation: $r = b^*p^{**n}$ 0.00329989 n= 1.50236500 b= By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.02306449 n= -0.34006360 b= 1.07774100 a= With constant pressure intervals are after the equation: $r = a + b^*p$ -0.40370830 b= 0.03283268 a =With constant pressure intervals are after the equation: $r = b^*p^{**n}$: 0.00430851 n= 1.43488500 b= With constant pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.03898544 n= -0.48444990 b= 0.96855540 a =Result files: a1.dat, a2.dat, n1.dat, n2.dat, abc.dat and abc2.dat Give file name......>rp-105.rpb Choose a pressure range between Pmin and Pmax Pmin= 21 Pmax= 1821 The result is now written on the file omr.dat ***** By given pressure intervals are after the equation: $r = a + b^*p$ 1.69479100 b= 0.01263897 a= By given pressure intervals are after the equation: $r = b^* p^{**} n$ 0.08327826 n= 0.74144570 b =By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.03408365 n= a= 0.84739550 b= 0.86479850 With constant pressure intervals are after the equation: $r = a + b^*p$ 1.82067800 b= 0.01246840 a= With constant pressure intervals are after the equation: $r = b^*p^{**n}$

A.6 CV-106

A.6.1 Result form

Figure A.6 gives the result form the firing with loading density 0.2002 g/cm^3 of M7 propellant from mix 285. It contains the firing conditions and the properties of the propellant used in calculations of the burning rate.

mat View Help					

*********************** CLOSED VESSEL TEST **********************************					

Fyringsidentitet= mo-06.asc					
Porsykstemperatur					
-0.2002 a/cm^3					
Tensats = 1.0 syartkrutt					
Kruttets tetthet= 1.662 g/cm3					
Kovolum					
Kruttgeometri etthull					
Ytterdiameter					
Innerdiameter					
Lengae Cm					
Kalibreringsfaktor - 500.00					
Samplingstid = 1 micsek					
Midlingstid					
······································					
Trykk-tid-fil= pt-06.pt					
Brennhastighetsfil rp-06.rp					
Dynamisk livlighetsfil dl-06.dl					
Dynamisk livlighetsfil.(dlp)= dlp-06.dl					
Pillax= 2390 Dai					
p(bar) r(cm/sek) p/pmax dl(1/(bar*sek))					
500 8.26 0.1 0.6786					
600 9.54 0.2 0.3412					
100 15.24 0.4 0.3044					
1400 18.83 0.7 0.2805					
1500 19.85 0.8 0.2632					
1700 21.76 0.9 0.2164					
1900 23.11					

Figure A.6 The Figure shows the result form for the CV-106 firing with M7 propellant from mix 285.

A.6.2 Calculations of burn rate equations

The calculation of the burn rate equations have been split into two pressure ranges since there is a break in the burn rate curve after 100 bars. Give file name......> rp-06.rpb Choose a pressure range between Pmin and Pmax Pmin= 22 Pmax= 2568 Give start pressure...... > 24The result is now written on the file omr.dat By given pressure intervals are after the equation: $r = a + b^*p$ -0.30021900 b= 0.03165704 a =By given pressure intervals are after the equation: $r = b^* p^{**} n$ 0.00717002 n= 1.31731700 b= By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.04521231 n= -0.45032850 b= 0.93355590 a= With constant pressure interval are after the equation: $r = a + b^*p$ -0.24760880 b= 0.03095599 a =With constant pressure interval are after the equation: $r = b^*p^{**n}$ 0.00887916 n= b= 1.26486200 With constant pressure interval are after the equation: $r = a + b^* p^{**} n$ 0.10206280 n= -0.79234830 b= 0.77428880 a =Result files: a1.dat, a2.dat, n1.dat, n2.dat, abc.dat and abc2.dat Give file name......>rp-06.rpb Choose a pressure range between Pmin and Pmax Pmin= 22 Pmax= 2568 The result is now written on the file omr.dat By given pressure intervals are after the equation: $r = a + b^*p$ 2.10224200 b= 0.01203393 a= By given pressure intervals are after the equation: $r = b^* p^{**} n$ 0.73868390 b =0.08684871 n= By given pressure intervals are after the equation: $r = a + b^* p^{**} n$ 0.03286597 n= a= 1.05112100 b= 0.86880030 With constant pressure intervals are after the equation: $r = a + b^*p$ 2.34714500 b= 0.01178524 a= With constant pressure intervals are after the equation: $r = b^*p^{**n}$

 $b{=}\quad 0.07775114 \quad n{=}\quad 0.75599920$