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English summary 
Experiences from the military operations in Afghanistan and Iraq have demonstrated the 
importance of understanding human behaviour. In an effect-based approach to operations so 
called ‘behavioural targets’ are emphasised, which implies the ability to impact human behaviour 
in a favourable manner. For instance a desired ‘behavioural target’ is to win the ’hearts and 
minds’ of the population in order to ensure support and compliance with the peace process. 
Despite the focus on human behaviour, there is a lack of adequate models to support decision 
making with regard to human social behaviour. The aim of this study is to review and explore 
models of complex adaptive systems (CAS) and to assess their applicability to support analysis of 
human social behaviour in conflict environments. 
 
CAS is a special category of complex systems that involves modelling of living beings that are 
capable to adapt to their environment. In models of CAS, dependencies and interactions among 
the individuals of the system are the main drivers of system behaviour. A wide variety of CAS 
models are developed to simulate human behaviour in social situations. In this study we focus on 
models simulating how people belonging to a social network may adapt to certain behaviour 
caused by social influence from other people in the network. This knowledge is further used to 
develop an agent-based simulation model for opinion formation in social networks.  
 
Results of the simulation experiments seem to agree well with typical behaviour of complex 
systems. Emergent, collective behaviour such as group formation and sensitivity to changes in 
input parameters are observed. The most influential parameters are related to the susceptibility of 
individuals to change behaviour due to social influence, and to the effect of an external influence 
field. This field may represent the impact of mass media or propaganda. The network model 
applied includes individuals with many connections (hubs). These have a central role in 
controlling the information flow, and thus, for the opinion formation in the network.  
 
Agent-based models of CAS are complementary to other simulation models applied within 
operational research. They can be used to provide insight into the behaviour of human social 
systems and how these systems are influenced by different actions.  
 
Modelling of CAS is a relatively immature field of science which has become more popular in 
recent years, particularly within the defence research community. There are, however, several 
challenges related to model validation, and data collection and modelling that have to be sorted 
out to increase the confidence in these models. Thus, further research is required to make CAS 
models useful as decision support tools on real-world problems.  
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Sammendrag 
Erfaringer fra de militære operasjonene i Afghanistan og Irak har vist viktigheten av å forstå 
menneskelig atferd. I en effektbasert tilnærming til operasjoner vektlegges evnen til å kunne 
påvirke menneskelig atferd i en fordelaktig retning i forhold til definerte effekter og mål. Et 
eksempel kan være å vinne tillit i befolkningen for å sikre støtte til en fredsprosess. Det 
modellgrunnlaget som finnes for å støtte beslutningstaking relatert til menneskelig sosial atferd er 
svært mangelfullt. Formålet med denne studien er å bygge opp kunnskap om modellering av 
komplekse adaptive systemer (eng: complex adaptive systems – CAS) for å kunne vurdere 
egnetheten av denne type modeller mht. å støtte analyse av komplekse sosiale systemer i 
konfliktområder. 
 
CAS er en egen kategori av komplekse systemer som involverer modellering av levende vesener. 
I modeller av CAS er det interaksjon og avhengigheter mellom individene i systemet som i stor 
grad er styrende for systemets oppførsel. Det er utviklet mange ulike typer CAS-modeller for å 
simulere menneskelig atferd i forskjellige sosiale kontekster. I denne studien har vi valgt å se på 
modeller for hvordan mennesker tilhørende bestemte sosiale nettverk kan velge å tilpasse sin 
atferd på bakgrunn av sosial påvirkning fra andre mennesker i nettverket. Denne kunnskapen 
benyttes i utviklingen av en agentbasert simuleringsmodell for simulering av meningsdannelse i 
sosiale nettverk.  
 
Resultatene av de gjennomførte simuleringseksperimentene viser god overensstemmelse med 
typisk oppførsel observert i komplekse systemer. Spesielt gjelder dette oppdukkende, kollektiv 
oppførsel som f.eks. gruppedannelse, og sensitiviteten for forandringer i input. De viktigste 
parameterne i modellen er knyttet til individenes motstand mot å forandre oppførsel/mening og til 
effekten av ekstern påvirkning som kan ha sitt opphav i eksempelvis massemedia eller 
propaganda. Nettverksmodellen som benyttes inneholder individer med mange relasjoner. Disse 
individene spiller en sentral rolle med hensyn til kontroll av informasjonsflyten og vil således 
også kunne ha stor påvirkning på meningsdannelsen i nettverket.  
 
Agentbaserte simuleringsmodeller av CAS er komplementære til andre simuleringsmodeller som 
benyttes innen operasjonsanalyse. De kan anvendes til å gi bedre innsikt i menneskelige sosiale 
systemer og hvordan disse systemene påvirkes av ulike virkemidler og handlemåter.  
 
Modellering av CAS er et relativt umodent forskningsområde som i de senere år er viet større 
interesse, spesielt innenfor militær forskning. Men, det er flere utfordringer, blant annet knyttet til 
validering og til innsamling og bearbeidelse av inputdata, som må håndteres for å øke tiltroen til 
disse modellene. Det er derfor behov for videre forskningsinnsats for å gjøre disse modellene 
anvendbare som beslutningsstøtteverktøy for reelle problemstillinger. 
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1 Introduction 
In peace support operations (PSO), and in particular in the stabilisation and reconstruction phase, 
the emphasis has shifted from traditional ‘physical targets’ to so called ‘behavioural targets’, 
which means to influence the behaviour of the civil population and adversaries in a favourable 
manner. To succeed in PSO it is regarded as important to win their ‘hearts and minds’ to ensure 
support and compliance with the peace process. To achieve this goal it is necessary to influence 
many parts of the society – political, military, economical, social, infrastructure, and the 
information system (PMESII) – which requires a broad spectrum of military and civilian means.  
 
A condition for good decision making in this context is an information basis comprising all 
relevant aspects of the systems one wants to influence. This includes information necessary for 
developing decision alternatives, and information relevant for assessing consequences of the 
alternatives. The challenge is to find the decision alternative that most likely gives the desired 
outcome while simultaneously minimising unintended, negative consequences. This is 
particularly challenging when dealing with human social systems. Despite this focus, there is a 
lack of adequate models and methods to help understand how human behaviour is affected by 
different means in conflict environments. 
 
PSO is about influencing complex human social systems. Complex systems contain many 
constituents interacting nonlinearly, and it is the relationships and dependencies among the 
constituents that are the main drivers of system behaviour. In complex adaptive systems (CAS) 
human beings interacts and influence each other through social relationships, which can result in 
adaption of certain behaviour. CAS is found to have many properties in common with real human 
social systems, and thus, models of CAS may be useful tools for analysing social behaviour in 
conflict environments.  
 
The aim of this study is to review and explore models of CAS and to assess their applicability to 
support analysis of human social behaviour in conflict environments.  
 
Chapter 2 gives a brief introduction to CAS and the challenges in modelling this kind of systems. 
In Chapter 3 different models of CAS are presented and discussed. Chapter 4 introduces a model 
for simulating opinion formation in social networks based on models and theories presented in 
Chapter 3. In Chapter 5 some results from the opinion formation model are presented. Chapter 6 
contains a summary and discussion of our main findings, and in Chapter 7 we present the 
conclusions of this study. 

2 Complex Adaptive Systems 
CAS is a category of complex systems which involves models of adaptive living beings [1]. CAS 
models are usually computational agent-based models where agents represent individuals that are 
capable of making autonomous decisions on how to adapt to different situations [2;3]. Agents 
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adapt to increase their rate of success. They are also capable of influencing their environment in a 
favourable direction. 
 
The complexity of a system arises when the dependencies among the elements becomes 
important. Complex systems are sensitive to changes – removing one element may have large 
consequences for the behaviour of the whole system. Hence, complex systems are not easily 
reducible without sacrificing important system behaviour. Models of CAS are to a large extent 
based on models developed for analysing complex systems. Baranger and Michell highlight some 
typical properties of complex systems [4;5]. Complex systems contain many interdependent 
elements interacting nonlinearly. A common feature of nonlinear systems is that only small 
changes in some parameters may bring about large changes in system behaviour.  
 
Complex systems possess a structure spanning several scales. A human society spans several 
levels such as the individual, family, social groups, municipality, and national level. At each level 
we find a certain structure. Complex systems are capable of emergent behaviour when shifting 
focus from one scale to a more coarse scale. Behaviour observed at a certain scale is said to be 
emergent if it cannot be understood by studying, separately and one by one, every constituent of 
this scale. Emergent behaviour is caused by interaction between the constituents on a particular 
scale.  
 
Complexity involves the interplay between chaos and non-chaos. If the value of some control 
parameter is changed, the system may be chaotic for some values and non-chaotic for others. The 
values for which the system undergoes large changes are often referred to as critical points. 
 
Complexity involves interplay between cooperation and competition. Competition on one scale  
may nourish cooperation on a finer scale, e.g. good cooperation between the players of a football 
team strengthen their competitiveness as a team, and good cooperation between soldiers in a troop 
may strengthen their performance and survivability. 

3 Theories and models of CAS 
This chapter gives a survey of relevant methods and models related to CAS. The main focus is on 
network models, however, some other important models will be mentioned as well. 

3.1 Cellular Automata 

Cellular Automata (CA) are probably the most applied class of CAS models. These models 
consist of a uniform lattice of N*M cells which at time t can be in one of k states. The state of the 
CA is completely specified by the values of the state variables at each cell. The CA evolves in 
discrete time steps where the variables in each cell is updated simultaneously based on the value 
of the variables in its neighbouring cells in the previous time step according to a definite set of 
local rules. There are different kinds of neighbourhoods, but the most common are the von 
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Neumann neighbourhood including the four closest neighbouring cells, and the Moore 
neighbourhood including the eight nearest cells. 
 
CA models have been extensively used for simulation of complex systems in natural science. In 
recent years they have also been more accepted within social sciences as a tool for studying 
complex human systems. Using the basic principles of CA combined with more advanced rules 
for interaction between agents (cells) it is possible to simulate and explore many properties of 
human societies. One famous example is Axelrod’s model of dissemination of culture [6]. This 
model is based on a regular lattice of cells that are updated at discrete time steps. Each cell 
represents an agent which is born in a certain state determined by a set of socio-cultural 
parameters referred to as features. Each feature can take a discrete number of values called traits. 
The basic premise of the model is that the more similar an individual is to a neighbour, the more 
likely they will interact, and adopt one of the neighbour’s traits. Similarity leads to interaction and 
interaction leads to still more similarity, and the main question addressed by Axelrod was that if 
people tend to become more alike in their attitudes and behaviour when they interact, why do not 
all such differences eventually disappear?  
 
For a more thorough presentation of CA with applications, see [7-9]. 

3.2 Networks 

In a society there usually exist a wide variety of social relationships between individuals giving 
rise to social networks, e.g. friendship networks, family networks, labour networks, etc. People 
interact through these networks to exchange information and to influence each others opinions. 
The consequences of social influence depend on the properties of the agents and the type of 
relationships among them. Social interaction is regarded as an important mechanism for adaption 
in societies.  
 
This overview of network models starts by a short introduction to graph theory to explain some 
basic properties of networks. Further, different kinds of network models will be presented and 
compared to real-world network models.    

3.2.1 Graphs 

The construction and analysis of networks is based on graph theory [10-12]. A graph is composed 
of nodes (vertices) and edges that connect pairs of nodes. In this context a node is synonymous 
with an agent and edges represent relationships between agents. Graphs can be directed 
(digraphs), meaning that the relationship between a pair of agents is dependent on the direction, 
i.e. the relation from agent a to b is in general different from the relation of b to a. In an 
undirected graph there is no such distinction. Figure 3.1 shows a simple undirected graph with 
four nodes and edges.  
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Figure 3.1  A simple undirected graph with nodes and edges 

The degree of node no. i, ki, is equal to the number of edges connected to the node. In Figure 3.1, 
node 1 has k = 2 while node 2 has k = 3. The distribution of k’s, P(k), is an important property of 
networks, and different networks typically have different distributions. The nearest neighbours to 
a node are referred to as adjacent nodes. The adjacency matrix, A, is a matrix containing the 
relationships between adjacent nodes. Table 3.1 gives A for the network presented in Figure 3.1. 
For undirected graphs A is symmetric, i.e. A = A’. 
 
Node no. 1 2 3 4 

1 - 1 1 0 
2 1 - 1 1 
3 1 1 - 0 
4 0 1 0 - 

Table 3.1  Adjacency matrix for the network presented in Figure 3.1 

The distances between nodes can be measured by the number of edges between pair of nodes. In 
the graph presented in Figure 3.1 the distance, d = 1 between node 1 and 2 and d = 2 between 
node 1 and 4. In a network there is usually more than one path between pairs of nodes. The 
geodesic distance is a measure of the length of the shortest path between nodes. In addition, the 
nodes may have a geographical position associated to a world represented by for instance a grid 
with n*m cells. Agent ai has position (xi, yi), where x = 1, 2, ...,n and y = 1, 2, ..., m that enables 
calculation of the Euclidian distance between agents. Both these distance measures are important, 
because the level of interaction between agents usually is dependent on the immediacy of the 
nodes.   
 
Table A. 1 in Appendix A lists some additional measures that are used to characterize networks.  
In this study we mainly make use of the clustering coefficient Ci, which measures the formation 
of groups or cliques, the geodesic distance d(ni, nj) and the nodal degree ki. See e.g. [12] for a 
more elaborate explanation of these measures. 

3.2.2 Network models 

There exists a wide variety of network models that share common characteristics with real-world 
social networks. References [5;11;13-16] highlights some important properties observed in real-
world networks:  
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o • They tend to have “small-world” properties, which mean: 

- High degree of clustering, i.e. it is likely that friends of my friends also are my 
friends; thus the edges of the graph are not distributed uniformly, but tend to 
form clusters 

- Short average path length between pair of nodes, i.e. short geodesic distances  
- The graphs tend to be sparse; they usually have few connections relative to the 

theoretical maximum number of connections, which for an undirected graph of N 
nodes is N(N-1)/2. 

o Existence of hubs. The degree distribution, P(ki), follows a power law which allows for 
nodes with a high connectivity.  

 
Network models are usually constructed to reflect one or more of the real-world properties 
described above. The most common network models are:   

o Regular networks: graphs where each node has the same number of neighbours, i.e. the 
degree of the nodes are constant, k = const. An example of this kind of network is a 
regular lattice where each node has exactly four connections (k = 4) 

o Random networks (the Erdös-Rényi model) [15]: graphs generated by connecting pairs of 
nodes at random using a uniform probability p. In the one extreme p = 0 there will be no 
connections while when p = 1 the graph will be a clique (the clustering coefficient = 1). 
The expected number of connections are p*N(N-1)/2  

o Small-world networks (Watts and Strogatz model) [14]: graphs based on a regular 
network where each node is connected to k neighbours. For each link, with a probability 
p, one end of the link is rewired to a randomly chosen node in the network. When p = 0 
the network will be regular and when p = 1 it will be random. The interesting range of p 
lies between these extremes. Small-world networks have the small-world properties 
mentioned above.   

o Scale-free networks (Barabasi-Alberts model) [13]: graphs that shows all the properties of 
real-world networks described above. Scale-free networks are further described in 
Chapter 3.2.3. 

 
In Barabasi et al. [15] the network models are compared to typical properties of real-world 
networks. 
 
Social network analysis (SNA) comprises a suite of methods for construction and analysis of 
human social networks [12]. SNA is utilised to collect and store information about relationships 
between humans. This in contrast to the methods mentioned above to automatically generate 
network structures with real-world properties. In SNA, networks are constructed by use of 
qualitative information, but analysed using quantitative methods from graph theory. The objective 
is usually to identify central actors and important relationships between actors in the networks.  

3.2.3 Scale-free networks 

The behaviour of scale-free networks is independent of the number of nodes, and the distribution 
of connections, P(k), follows a power law, 
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( )P k k λ−:  (3.1) 
 
where k may take any value in the interval [0, N-1] and the exponent λ typically takes values 
between 2 and 3. A power law has a fat tail which mean that there is generally a higher 
probability for nodes with many connections compared to for instance an exponential or normal 
distribution. An example of a scale-free network together with P(k) for different network sizes is 
shown in Figure 3.2.  
 

 

Figure 3.2 | Left: A scale-free network with N = 100 nodes. Right: for N = 10, 50, 

100, 1000 nodes. 

2.8( )P k k −:

The figure shows that there exist highly connected nodes (hubs) in the network. For N = 1000 
nodes with more than 100 connections are observed. The scaling exponent, λ ≈ 2.8, is in line with 
empirical networks studied in [13]. Using the β distribution with the parameter β = 1 we can 
calculate the expected number of connections by, 
 

1 2.2
2

k γ
γ

−
= ≈

−
 (3.2) 

 
Scale-free networks are developed by applying a procedure based on preferential attachment. 
Initially, a few nodes are generated (typically 2 or 3) and mutually connected. Further, new nodes 
are generated and attached to the nodes in the network depending on how well the existing nodes 
are connected. Preferential attachment means that a new node is more likely to connect to a well 
connected node then to a node with fewer connections. The probability that a new node is 
connected to node i is given by Equation (3.3),   
 

( ) ,             1, 2,...,i
i

j
j

kP k j N
k

= =
∑

 
(3.3) 
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3.3 Modelling behaviour 

Agents are proactive objects representing individuals that are capable of making their own 
decisions on how to behave. In CAS models agents are allowed to interact and to adapt to their 
environment through cooperation or competition with other agents. The decision making process 
is usually rather simple and comprises only the most relevant factors influencing individual 
decision making. This is the core of CAS models – individual behaviour on smaller scales yield 
emerging, collective behaviour on larger scales.   
 
Agents perceive their environment through sensors and they exchange information with other 
agents. The information is interpreted and contributes to forming the agent’s intentions which, 
together with habits and facilitating conditions, may result in adaption – change in behaviour. 
Triandis has developed a theoretical framework for explaining behaviour [17]. The model 
comprises casual relationships between important concepts from different subfields within 
psychology. This framework may serve as a basis for modelling adaption of behaviour. A 
simplified version of this framework is shown in Figure 3.3.  
 

Social 
factors

Affect Perceived
consequences

Intentions Habits

Facilitating
conditions

Behaviour

Personality
Culture

Situation-Behaviour-Reinforcement sequences

Social 
situation

Individual perception
of cultural variables

Relevant arousal
Objective consequences

Interpretation

Reinforcement

Social 
factors

Affect Perceived
consequences

Intentions Habits

Facilitating
conditions

Behaviour

Personality
Culture

Situation-Behaviour-Reinforcement sequences

Social 
situation

Individual perception
of cultural variables

Relevant arousal
Objective consequences

Interpretation

Reinforcement  

Figure 3.3  A simplified version of Triandis model of human behaviour. 

According to Triandis model agent behaviour is determined by habits and intentions which are 
constituents of the agent’s personality combined with facilitating conditions and relevant arousal. 
Intentions are formed by social factors which are the result of internalization of the particular 
culture’s way of perceiving the social environment including the subjective culture with norms, 
roles and values. Previous experiences with a particular behaviour result in affect toward the 
behaviour, i.e. the emotional system is influenced to make an individual feel pleasure or 
displeasure for some particular behaviour. Behaviour takes place in different social situations that 
impacts the facilitating conditions and the arousal, which again influence the probability of 
adaption. Behaviour has objective consequences which are interpreted by the individual giving 
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rise to reinforcement. Reinforcement affects how consequences are perceived – both the value of 
consequences and the probability of occurrence. 
 
Social influence is one of the main mechanisms driving adaption. Individuals belonging to the 
same social network influence each other through interactions. This may give rise to changes in 
individual behaviour, which further can have consequences for the opinion formation in the 
whole network, e.g. formation of groups (cliques) with similar opinions.  

3.4 Modelling social influence  

Agents live in societies where they take part in different social networks. The nature of these 
networks determines the level of interaction between agents in the group and how they influence 
each other. There are several models developed for simulating interaction and adaption of 
individuals to societies. Among these are Latané’s social impact model [18], Axelrod’s model of 
dissemination of culture [6], Deffaunt’s model of consensus formation [19], and artificial 
societies [20]. In this study Latané’s model of social impact is emphasised, because our main 
focus is on group influence. 

3.4.1 Group influence model 

In Latané’s model of social impact people interact and adapt to their environment through 
relationships with other humans. People are exposed to influence from sources that support or 
oppose their current opinion, which may result in, for instance, adaption to the prevailing opinion 
in the social network.  
 
In social impact theory [18;21] the social force experienced by an individual, I = f(smN), is a 
function of  the source strength (s), the immediacy (m), and the number of sources (N). The 
source strength may depend on factors such as the perceived legitimacy of the source, the age, 
status in the society, economic status, and on the nature of relationships with other individuals. In 
a society as for instance in Afghanistan, religious leaders (mullahs), paterfamilias, landowners, 
and elders traditionally have a high social status, and thus, are expected to have a high level of 
impact on the opinion formation in the society. Latané distinguishes between two types of source 
strength – one with respect to the people who share the sources opinion and another for the people 
opposing the sources opinion.  
 
Immediacy between two agents i and j refers to their closeness in space and is expressed as,  
 

1
ij

ij

m
d α=  (3.4) 

 
where dij is the distance between agents measured by the geodesic distance between pair of agents 
and α is a decay exponent [22]. In Wagg [7] mij is extended to include social distances originating 
from differences in for instance religious affiliation and ethnicity. These differences may have 
huge impact on the likelihood of communication between individuals. This is in accordance with 
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one of the premises of Axelrod’s model which assumes that people sharing similar attributes are 
more likely to interact and communicate.  
 
The third parameter in SF is the number of sources. In [18] the impact of sources is modelled as   
I ~ sNt, where t < 1. This implies that the first source has greater impact than the second and so 
on.           
 
Individuals are influenced by people supporting or opposing their current opinion. The net social 
influence on an individual is given as the sum of influences from its neighbours in the network. 
Usually the individual, to some extent, resists changing its current opinion. This is accounted for 
by a resistance factor β, reflecting the inclination of an individual to maintain his/her current 
opinion or the individual’s susceptibility to external influence. In principle this factor will vary 
from person to person and may change over time due to new experiences. However, in this simple 
model β is kept constant. In [21] an individual is likely to change behaviour if Io  - Is > β, where Io  
is the opposing social pressure and Is   is the supporting pressure. Karperski et al. [23;24] have 
developed a model that incorporates all these factors in one equation for the net social influence, 
I, experienced by an individual, 
 

1,

N
j i j

i i i
j j ì ij

s
I s h

dα

σ σ
β σ

= ≠

= − − − ∑  (3.5) 

 
o si, sj is the social status of the agents 
o β is the resistance factor (susceptibility to social influence) 
o h is an external field such as global preference or effect of mass media 
o σi, σj  is the current opinion of agent i and j. σ  = ± 1 

 
The last term of this equation corresponds to a linear version of the social force described above. 
In this model it is only the factor β that is related to the agent’s personality, and thus can be 
directly related to Triandis framework for behaviour described in Chapter 3.3.  
 
The model expressed by Equation (3.5) is rather simple. The net influences on a agent is given as 
a linear sum of social influences from neighbouring agents in the network together with a uniform 
external field of influences. If this sum is greater than the product of the agent’s resistance factor 
and its social strength, i.e. I > 0, the agent will change its opinion. To introduce some randomness 
in this decision process Karperski applied the following expressions for the probability of 
changing opinion at time t + Δt. 

( ) with ( )
( )

( ) with 1 - ( )

I
T

i i I I
T T

i I
T

i i I I
T T

et P I
e et t

et P I
e e

σ
σ

σ

−

−

−

⎧
⎪ =
⎪ ++ Δ = ⎨
⎪
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+⎩

 (3.6) 
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The parameter T in Equation (3.6) introduces a degree of randomness in the behaviour and may 
be interpreted as the agent’s average volatility. If T is increased we introduce more randomness, 
and in the limit T→∞, P(I) = 0.5, while when T→0, P(I) = 1 (deterministic limit). 
 
To illustrate the model given by Equation (3.5) we use the network model shown in Figure 3.4. 
 

N = 4, σ = -1
s4 = 4, β = 2

N = 2, σ = 1
s2 = 2, β = 2

N = 1, σ = 1
s1 = 2, β = 2

N = 3, σ = -1
s3 = 3, β = 2

N = 5, σ = 1
s5 = 3, β = 2

N = 4, σ = -1
s4 = 4, β = 2

N = 2, σ = 1
s2 = 2, β = 2

N = 1, σ = 1
s1 = 2, β = 2

N = 3, σ = -1
s3 = 3, β = 2

N = 5, σ = 1
s5 = 3, β = 2

 

Figure 3.4  A simple graph with five agents (nodes) 

Choosing agent 2 as the target and the other agents as sources the social influence I, experienced 
by agent 2 to change or retain his/her opinion is given in Table 3.2. 
 
Relation σj σ2 sj d2j SF2j 

1→2 1 1 2 1 2 
3→2 -1 1 3 1 -3 

4→2 -1 1 4 1 -4 

5→2 1 1 3 2 0.75 

 Sum -4.25 

Table 3.2  Calculation of social force on agent 2 in Figure 3.4 

Using Equation (3.5) with, α = 2, β = 2, the level of social influence experienced by agent 2 is; I2  
= -2*2 - 1*1 - (- 4.25) =  -0.75. Since I < 0 it is likely that agent 2 will retain its current opinion. 
Using Equation (3.6) with T = 1 (small randomness) gives a probability of retaining current 
opinion, σ2(t+Δt) = 0.82. If T is increased to 10 the probability is reduced to 0.54. 

3.4.2 Deffaunt’s consensus model 

Deffaunt’s consensus model is different from the group influence model presented above 
[19;25;26]. Assume that N agents with opinion xi participate in a network. At every time step one 
agent, A, is chosen at random together with an agent, B, from the sites connected to A. If the 
difference in opinions σA and σB of agent A and B respectively is less then a constant ε then A and 
B make contact and exchange information. In this process A and B become more alike by 
changing opinion by an amount δ = μ(SA – SB) on a continuous scale where μ is a constant taking 
values in the interval [0, 1]. A takes the opinion SA - δ  and B the opinion SB + δ. Otherwise, if A’s 
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and B’s opinions differ by more then ε they refuse to talk. For an example of application see 
[19;27].  

4 A model for simulating opinion formation in social networks  
The main motivation for developing a model of opinion formation is to gain more experience 
with modelling and simulation of CAS, and to explore the potential of CAS models to simulate 
human social behaviour in conflict environments. The model reflects how people’s opinions are 
affected by social influence from other people belonging to the same social network. Social 
influence is recognised as one of the main mechanisms driving adaption of human behaviour. The 
model is based on the group influence model described in Chapter 3.4.1 and the scale-free BA 
model presented in Chapter 3.2.3.  
 
The model may be viewed as a first attempt to model problems related to winning the ‘hearts and 
minds’ of a population to ensure support and compliance with a peace process. The diagram in 
Figure 4.1 depicts some important cause effect relationships between factors that are believed to 
have impact on whether the population supports the peace process or not.  
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Figure 4.1 A simple causal diagram with factors and relationships having impact on whether 
people or groups of people support the peace process 

This diagram comprises several cause effect relationships which are difficult to determine and 
quantify. Looking at the individual scale (personal level) several factors included in the diagram 
may result in adaption of individual behaviour. These factors are included as state variables of the 
agents in the opinion formation model. The main state variable is x1, support to the peace process, 
which is dependent on the state of the other influencing variables shown in Figure 4.1 such as 
perceived security, living standard, perceived justice, and legitimacy of government. 
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The main ingredients of the model are: 

• There are generated N interacting agents with different properties and opinions to form a 
society. The agents interact through their social network.  

• The agents have several state variables measuring their opinion on certain important 
issues related to whether they chose to support the peace process or not.  

• Every agent is characterized by a set of socio-cultural factors governing its attitudes and 
the likelihood of changing opinion. Every agent has an associated ‘social strength’ (social 
status) that determines its strength of influence on other agents, and the level of impact 
other agents have on its current opinion. 

• The social impact is governed by the social strength and the immediacy between agents. 
Immediacy is not limited to the physical distance between agents, but may include social 
separation as well.  

• The model has an external uniform influence field that influences all the agents in the 
society.  

• The state variables of the agents are updated at discrete time steps. At each time step an 
agent is chosen at random and the net social influence from its neighbours are calculated. 
If the social pressure is large enough the agent will most likely change its opinion. 

• The model is stochastic allowing for Monte Carlo simulations.  

4.1 Network model  

The agents are linked to other agents through a network structure representing social relations.  
A social network may comprise different types of relations; family, neighbourhood, professional, 
etc. which are activated with different frequency. For instance, in a village in the northern part of 
Afghanistan family, religious and landowner networks plays an important role in everyday life. 
Generating network models that incorporate relevant properties of real-world networks requires 
good knowledge about social relations and how information propagates. Although the network 
models described in the previous chapter show many characteristics of real-world networks they 
need to be adapted to the specific social context they represent. Another possibility is to build 
empirical networks based on collected data about people and relationships as in SNA. 
 
In our model the preferential attachment of the scale-free BA network presented in Chapter 3.2.3 
is slightly modified to generate networks that emphasize small-world properties to a larger extent. 
This is done by introducing geometrical distances, dij, between the agent positions in  
Equation (3.3). 

1( ) ,             1, 2,...,i
i

j ij
j

kP k j N
k dα= + =

∑
 

(4.1) 

α is a decay exponent with default value 2. This expression for P(k) may become larger than 1, 
and in this case P(k) = 1. In Figure 4.2 the distribution of the standard BA network model is 
shown together with the modified model (green dashed line). The modified BA network has more 
nodes with degree, k, between 1 and 10, thus, the average number of connections (average nodal 
degree) for the modified network is higher, k  = 3.2, compared to the standard BA network where 
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k  = 2.1.1 The modified network has a higher density DmBA  = 0.013 compared to standard 
network where DBA = 0.008. The geodesic distance between pair of nodes (i.e. the shortest path) 
is almost equal for the two network models (4.2 for the modified network and 3.9 for the standard 
network). For definitions of the density measure and the geodesic distance, see Appendix A.  
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Figure 4.2  P(k) vs. k for the standard BA model and for the modified BA model 

The network applied in this model is a simple undirected graph as illustrated in Figure 4.3.  
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Figure 4.3 A BA scale-free network with 100 nodes residing in a 100*100 lattice 

                                                           
1 This is close to the value k  = 2.2 calculated in Chapter 3.2.3. 
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4.2 Social influence model 

The social influence model is a modified version of the model given by Equation (3.5) in Chapter 
3.4.1 to allow for three different states instead of two. The motivation for this extension is that 
people do not necessary have a binary point of view. They can be uncertain about what standpoint 
to support and therefore chose to be neutral.  
 
It is assumed that the state variables are discrete and that they can take three different values, xi є 
[1, 0, -1], where 1 = support, 0 = neutral, and -1 = oppose. The state diagram of the variables is 
given in Figure 4.4.  
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Figure 4.4  State diagram for the state variables with some transition probabilities, P 

Every agent in the network is created with a certain combination of values on the state variables 
(state vector), which depends on factors such as age, gender, geography, religion, ethnicity, etc. 
The initial distribution of values may reflect the distribution of a real society, e.g. an area in the 
northern part of Afghanistan.  
 
As explained above, the model for interaction between agents is slightly modified to allow for 
three states and to include social separation in the expression for the immediacy. The geometrical 
distance dij is given as the number of edges between pair of agents, i.e. nearest neighbours have 
distance, dij = 1, next nearest neighbour, dij = 2, and so on. The social separation is expressed by 
sdij which may include various socio-cultural factors such as ethnicity and religion. An example 
of how social separation can be included by use of the Bogardus social distance scale is given in 
[7]. The expression for the immediacy is given by Equation (4.2) 
 

1 2

1
( )ij

ij ij

m
d sdα α=

+
 (4.2) 

 
To extend the influence model to include a third, neutral level, a two stage algorithm to calculate 
the state transitions is introduced. First, the agent has to decide if he should change his current 
state. Then, if change of state is true, a particular state has to be chosen. Equation (4.3) 
corresponds to Equation (3.5) in Chapter 3.4.1 except from the last term which accounts for the 
social force from neighbouring agents. In this three state model the net social influence on agent i 
is calculated by separating agents supporting Ai’s current opinion from those agents opposing it.  
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(4.3) 

 
This equation together with the probability for changing state given by Equation (3.6) in Chapter 
3.4.1 is used to determine if an agent will change its opinion as a result of social influence. If the 
model contains more then one state variable it is necessary with one expression (Equation (4.3)) 
for each of the state variables.   
 
The parameters and variables of the model are explained in Table 4.1. 
Ii   Social impact on agent i, Ai 
σi, σj  Opinion of agent i and j 
si, sj  Social strength affecting the degree to which agent i and j is influenced by 

others and influence others 
β Individual’s resistance to change opinion 
hσ Uniform external influence on Ai 
mij Immediacy between agent i and j which depends on the geometrical 

distance, dij and the social separation sdij. Immediacy may be seen as the 
likelihood of communication between the agents.  

dij Geometrical distance measured by the number of links/arcs between 
agents 

sdij Social separation which is a function of socio cultural factors, e.g. 
ethnicity and religion 

α1, α2  Distance decay exponents. Usually α1, α2  ≥ 2  

Table 4.1 Parameters in Equation (4.2) and Equation (4.3) 

If agent Ai decides to change opinion, he can enter two different new states. To choose which 
state to enter we apply the probabilities shown in the state transition matrix T, 
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Every element of T corresponds to a state transition probability, P, shown in the state transition 
diagram of Figure 4.4. N1, N0, N-1, represent the number of agents in state 1, 0, -1 respectively, 
and E1, E0, E-1 the strengths of a possible external field. It is assumed that the transition 
probabilities are proportional to the number of agents in each state. In addition, the probabilities 
are given weights to allow for adjustments of the transition probabilities. For instance it may be 
more likely to change to a neighbouring state than to a more distant state. The diagonal is zero 
because it is already decided to change state.              
 
The opinion formation model developed in this chapter comprises three sub-models; a social 
network model, a social influence model, and a behaviour model. Initially, agents are created and 
placed at a random position in an M*M matrix. Further, every agent is given specific properties 
based on the value of the input parameters and connected to other agents by the preferential 
attachment procedure. This network of agents constitutes the starting point of the simulation. At 
each time step an agent is chosen at random and the social influence model is applied to calculate 
the net social influence on the agent. If the net social influence to change opinion exceeds the 
agents’ resistance against change, it is likely that the agent will change its opinion. This model 
only makes use of one state variable. A further development of the model may include more 
interdependent state variables, e.g. make, say x1, dependent on the state of the other state 
variables as shown in the causal diagram of Figure 4.1. A change in perceived security from state 
0 to 1 may result in an increase in the agent’s support to the government x1, i.e. x1 = f(x2). 

5 Results  
The model for opinion formation described in Chapter 4 has been implemented to a simulation 
model using MatLab. Only one state variable, x1 – support to peace process, is included in the 
simulation model to avoid complexity.  
The agents can be in one of three different states; state = 1, support peace process (blue – B),  
state = 0, neutral (green – G), and state = -1, oppose (red – R). The experiments are performed by 
varying the parameters of Equation (4.3). Four different experiments were performed: 

 
o What are the consequences of changing the initial distribution (densities) of opinions; 

(nB0, nG0, nR0) = (NB0,  NG0, NR0)/N      
o What are the consequences of varying the resistance parameter (the susceptibility for 

social influence),  βi           
o What are the consequences of changing the distribution of social strengths, si:  

o By introducing a strong leader, i.e. an agent with much higher social status than 
the other agents  

o By removing the strong leader from the network    
o What are the consequences of varying the uniform external influence field, hσ   

 
The default parameter setting is given in Table 5.1. 
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Monte Carlo iterations 30 
Size of lattice 100*100 
Number of agents, N 500 
Initial distribution of 
opinions 

nB0 = 0.3,  nG0 = 0.4,  nR0 = 0.3 

Social strength si,   si = 0.8*ki + 0.2*agei. si is a function of the number of 
connections (degree) and the age of the agents 

Age agent i Agei = uniform(15,70). Uniformly distributed between 15 and 70 
years 

Resistance to change, βi 1 
External influence, hσ 0 
Exponent, α1, 2 
Volatility factor T 5 
Weights for transition 
probabilities in T 

All weights are set to 1 

Table 5.1 Default parameter setting for the simulation experiments 

 
The results are presented using two different measures:  

• The distribution of opinions,   ( , , )B G Rn n n

• The size of the largest cluster,  maxS
N

 

Smax is the size of the largest cluster of one of the opinions. To be included in Smax the agents have 
to be part of the relational network and to share the same opinions as their neighbours. There are 
also other measures that can be utilised to characterize the simulation results, see table A.1 in 
Appendix A. However, these two are found to be sufficient for communicating the results of the 
simulation experiments. An example of output from a simulation is given in Figure 5.1.  
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Figure 5.1 Typical results of a simulation on a 100*100 network with 500 agents. The left part 
shows the initial distribution of agents and the right part the simulation result. 

The upper part of the figure show the distribution of agents, (nB, nG, nR), on a 100*100 lattice (the 
relationships between agents are not shown to avoid making the figure too complex). The left part 
of the figure shows the initial distribution and the right part the results of the simulation after 
3000 time steps. The lower part of the figure displays the mean fraction of agents after 30 Monte 
Carlo (MC) iterations. It is apparent that the small initial advantage of the red agents, nR0 = 0.4, 
results in red dominance, nR = 0.57.  

5.1 Distribution of opinions 

How does the initial distribution of B, G, R, (nB0, nG0, nR0), influence the simulation results? It is 
expected that the initial distribution of agent opinions is important, because if an opinion is 
predominant it is likely that this dominance will increase through the simulation. However, it is 
not expected that we will obtain a global opinion (complete conformity) due to the fact that some 
of the agents are not part of the network. This in contrast to CA models where a global opinion is 
more common [9].2 Figure 5.2 gives the results of using different initial distributions of R agents, 
between 0.1 to 0.7, while the fraction of G and B are equal, (1 – nR)/2.  

                                                           
2 The reason for this is the lattice structure and updating rules of CA models, see 3.1. 
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Figure 5.2  Simulation results for different initial distributions of red agets 

The results show how the fraction of R agents increases non-linearly with the initial fraction of 
agents. When nR0 is in the interval [0.1, 0.4] the curve of nR has its largest slope, ΔnR/ΔnR0  ≈  2. 
Above this interval the slope is less then 2, and when nR0 → 1, dnR/dnR0 → 0. We also observe 
that nR is not likely to reach 1 as expected. The red agents start to dominate when the initial 
fraction of red exceed 0.3.  
 
Figure 5.3 shows the results when the initial number of neutral agents (G) is set to 0, i.e. there are 
only R and B agents present in the simulation. The curves intersect approximately at nR = nB = 
0.5, and the slope of the curves are steeper in the vicinity of the intersection point.  
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Figure 5.3  Simulation results when the inital number of green agents is set to 0, nG0 = 0 

Another feature of complex systems is apparent in Figure 5.2. The variation of nR for different 
values of nR0 is given with error bars in each point. The variation of nR is large for small values of 
nR0 and decreases when nR0 starts to dominate. This becomes particularly clear when we look at 
the relative uncertainties which are given by the numbers above the error bar. This indicates 
sensitivity for initial conditions in the region where nR0 doesn’t dominate. This is a characteristic 
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feature of non-linear complex systems, which makes the results of single runs at least as 
interesting as the average results of MC simulations. In Figure 5.4 and Figure 5.5 the variation of 
nR and <Smax>/N is plotted together with their initial values for every MC iteration. The default 
parameter setting is applied.  
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Figure 5.4 Variation in the density of red agents (nR) before and after simulation for each  
of the 30 MC iterations 
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Figure 5.5 Variation in the largest red cluster size, <Smax>/N, before and after simulation 
 for each of the 30 MC iterations 

It is apparent that only small variations in input can give large deviations in output. The resulting 
fraction of R varies from 0.12 in iteration no. 17 to 0.77 in iteration no. 25. It is therefore 
appropriate to stress that only considering the average results of MC simulations – we risk losing 
a lot of information about the behaviour of the systems.  

 26 FFI-rapport 2008/02200 

 



 
 
  

 
5.2 Susceptibility to external influence 

The resistance factor β is expected to have a significant impact on the simulations. It represents 
the individual agent’s susceptibility to influence from external sources. In the impact model 
(Equation (4.3)) β is multiplied with the social strength of the agent and the total external 
influence has to be larger than this product to obtain Ii > 0, and thus, increase the probability for 
changing state (Equation (3.6)). The results by varying β are summarized in Table 5.2. 
 
Resistance, β nB nG nR 
0,5 0,24 0,26 0,5 
1,0 0,19 0,32 0,49 
5,0 0,29 0,41 0,31 
10,0 0,3 0,4 0,3 

Table 5.2 Variations of the resistance factor β  

Almost no change in the state is observed when β exceeds 5, i.e. everybody hold their initial 
opinion. This behaviour is expected, because the product of the agents average social strength, 
which is approx. 12 (see Figure 5.6 below), and β is approx. 60. This is more than twice as much 
as the expected social influence from the neighbouring agents, which is approx. 26 assuming that 
the average number of neighbours is 2.2, and that the neighbouring agents have the opposite 
opinion. Using Equation (3.6) to calculate the probability of changing state gives a result close to 
0. However, if β  = 1, the probability increases to approx. 1. 

5.3 Social strength 

Social strength is another important parameter in the influence model. Each agent in the network 
is created with a static social influence factor based on a weighted sum of the agents’ connectivity 
and age (see Table 5.1). The higher ki (degree factor) the more prominent is the position of Ai in 
the network. This rather simple model gives a distribution of social strengths in the network as 
shown in Figure 5.6.   
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Figure 5.6 The distribution of social strength, s, from 30 MC iterations 
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It is apparent that most of the agents have s between 5 and 15 with an average of approx. 12. 
However, there are some agents with social strengths up to 50 present in the network. In order to 
complete the study, different normal distributions of s were tested, N(5, 1), N(5, 5) and N(10, 10). 
The results show only small changes in output for variations in the initial distribution of social 
strength. The fraction of red, nR varies from 0.4 to 0.51 for N(10, 10) and N(5, 1) respectively. 
This is as expected, because the resistance factor which by default is set to 1 will be less 
dominating in the latter case where most of the agents (≈ 70 %) have a strength 5 ± 1.      
 
A particularly interesting case is when a strong leader is introduced in the network. The red agent 
with most connections (largest k) is selected and given an increased social strength, while the 
strength of the other agents remains the same. The results of the variation of s for one strong red 
leader are given in Figure 5.7.    
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Figure 5.7 Fraction of R (nR) for different values of s for a strong leader 

It is apparent that the largest increase in nR is for s values below 50 – an increase of more than   
40 % is observed when s increases from 10 to 50. For s values above 50 the increase is smaller. 
This behaviour can be explained by the fact that the agents’ strengths are distributed as shown in 
Figure 5.6, where the average social strength is approx. 12. When the strength of the leader 
becomes larger than this value the leader starts to dominate his neighbouring agents. 
 
Figure 5.8 shows the resulting fraction of red agents as a function of the initial fraction of red 
agents for three different experiments. The curve at the top represents the situation where the 
most connected red agent is given a strength s = 1000. The curve in the middle depicts the 
situation where a strong red leader (s = 1000) is chosen at random among the agents in the 
network, and the curve at the bottom shows the situation when the strong leader is removed from 
the network. 
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Figure 5.8 The importance of a strong leader (SL) 

It is apparent that the effect of removing the strong leader is most prominent when the initial 
fraction of red agents is small. If the leader is operating in a network where most of the agents 
share his opinion, the consequences are rather small, only a 4 % reduction is observed for nR0 = 
0.6. This result can be explained by the fact that there are other well connected agents in the 
network sharing the strong leader’s opinion which will compensate for some the loss. If, on the 
other side, the strong leader is a part of a network where only 30 % of the agents initially support 
his opinion the consequences are larger, an average reduction up to 50 % is observed. The cluster 
of red agents is thus more vulnerable when the initial fraction of red agents is small. The reason 
for this is that when nR0 is small there is probably no other agent that can replace the strong 
leader. This observation indicates that a small group of supporters are more dependent on their 
leader than a larger group, which appears as more robust to changes in the leadership.  
 
Figure 5.9 shows the dependency between the resulting fraction of red agents and variations in 
the volatility factor T in Equation (3.6) for the situations with and without a strong leader present.  
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Figure 5.9 The resulting fraction of red agents as a function of agent volatility  
(SL = strong leader) 

The figure shows that a leader has greater impact when the agents are more volatile. This kind of 
system behaviour may be interpreted as, when the situation becomes more volatile, the strong 
leader becomes more influential.     

5.4 External influence field 

The uniform external influence field of Equation (4.3), hσ, represents a global preference 
supporting one of the opinions and which can be stimulated by mass media, politics, threats, 
propaganda, etc. This kind of influence is assumed to have a relatively high impact on the opinion 
formation in the network. The effect of this field depends on the resistance to change opinion, β, 
and the social strength, s, of the agents. It is more likely that an agent with low social status and 
low resistance change opinion due to influence of the external field than an agent with large s and 
β.  
 
Figure 5.10 shows the resulting densities of B, G, R for variations of the external influence field. 
The default parameter setting is applied and the external opinion is set to R. As can be seen, the 
field strength has a rather huge impact on the opinion formation. In this situation the density of 
red agents, nR approaches 1, because the uniform field reaches all the agents, even those which do 
not take part in the network.     
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Figure 5.10 The resulting densities of agent opinions as a function of external field strength 

The relative importance of the external field can be balanced by increasing the resistance of the 
agents to change opinion or by introducing a strong leader with an opposing opinion.  
 
In Figure 5.11 the distribution of agents is plotted against the resistance for two different values 
of the external field. The opinion of the external field is R, and it is apparent that the resistance 
parameter has large impact on the final distribution of B, G, R. In both cases (external field 
strength 10 and 20) the largest changes are observed within the interval [0, 5]. 
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Figure 5.11 The opinion densities as a function of resistance for different values of the external 
field strength 
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6 Discussion 
The aim of this study is to review and explore CAS models and to assess their applicability to 
model human social behaviour in conflict environments. Currently there is a lack of models to 
quantify effect achievement on ‘behavioural targets’ even though these targets are recognized as 
particularly important for achieving success in PSO. The CAS models explored in this study 
focus on relationships between individuals and how social influence through interaction gives rise 
to adaption of individual behaviour which further may lead to emergent, collective behaviour on a 
courser scale.  

6.1 Models and results 

The model described in Chapter 4 consists of three sub models:  
o Network model  
o Behavioural model  
o Social influence model 

 
The network model applied is based on a scale-free BA network which has many features 
observed in real-world social networks. The degree distribution of this network, P(k), follows a 
power law, which is a fat tailed distribution that allows for agents with high connectivity, i.e. 
existence of hubs. These agents play a prominent role in the networks because they have high 
influence on the information flow, and thus, they may also have great impact on the opinion 
formation. The existence of hubs has consequences for the vulnerability of the networks. If the 
information flow depends on a few agents only, the redundancy/robustness of the network is 
usually low. Removing these agents may cause the network to collapse, or more likely, it breaks 
into smaller parts (clusters). The network model applied is extended with a factor that rewards 
short geometrical distances between agents. This results in more dense networks with more 
connections between agents close to each other than in standard scale-free BA networks. 
 
Human beings are modelled as agents. Agents have the ability to make their own decisions based 
on input from their environment. In the real-world there are many factors that influence individual 
behaviour, but in our model the representation of human behaviour is rather simplified. Agents 
are created with a certain opinion on whether to support the peace process or not. Each agent is 
equipped with a resistance factor that determines its susceptibility to change opinion. The social 
influence model is based on Latané’s work on social impact theory [18] and Kacperski et al’s 
model of social influence and opinion formation [23]. This simple linear model given by Equation 
(4.3) comprises factors that are important for determining the level of social impact. Even though 
the model is simple it gives interesting non-linear behaviour such as emergent, collective 
behaviour when applied on a complex network of agents. The external influence experienced by 
an agent is of two types; the influence from other agents in the network with supporting or 
opposing opinions, and the influence from a uniform external field which may represent some 
common policy in the society. Every agent is initially given a certain social strength which 
depends on its role and status in the society. If the level of opposing external influence exceeds 
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the product of the agent’s resistance factor and social strength, the agent is likely to change 
opinion.  
 
In the simulation experiments the parameters of the social influence model were varied to explore 
the behaviour of the model on the modified scale-free BA network. The initial distribution of red 
agents was varied from 0.1 to 0.8. The most interesting behaviour was observed in the vicinity of 
the point where the agent opinions initially were distributed evenly, (nB0, nG0, nR0) = 0.33. In this 
region the largest changes in the resulting distribution, (nB, nG, nR) were observed. Also, the 
variations in the results of single simulations were huge in this region. In one experiment the 
resulting red distributions varied from 0.12 to 0.77. This kind of behaviour indicates sensitivity to 
initial conditions, i.e. small changes in the input may give rise to large deviations in output.  
 
The most influential parameters seem to be the level of resistance and the strength of the uniform 
external field. Small variations in these parameters cause large variations in output. In this 
simplified model the resistance parameter, β, is equal and constant for all agents during the 
simulation. To make the model more realistic this parameter can be made dependent on the social 
status of the agents, i.e. an agent with a high social status is more likely to hold on to his opinion 
than one with a lower status. Another factor that may contribute to the resistance is whether the 
agent has changed his opinion earlier, and because of this will more likely change its opinion in 
the future as well. The influence of the uniform external field is balanced by the level of 
resistance combined with the agents’ social strength. If the external influence field originates 
from different sources it is possible to make the resistance factor dependent on the nature of the 
source.  
 
The model does not seem to be very sensitive to the distribution of social strength. Several 
distributions were tested with only small changes in output. However, by introducing a strong 
leader in the network we observed a 40 % increase of the group supporting the strong leaders 
view. Removing this leader has large consequences for the distribution of opinions, in particular 
when the initial group of people sharing the leader’s opinion is small. A reduction of approx.  
50 % in the largest cluster was observed. The main reason for this is that the cluster disintegrates 
into smaller parts.  

6.2 Applicability to operational research 

Although the models explored in this study do not pretend to simulate human social behaviour in 
real societies it is our opinion that multi-agent models of CAS have the potential to address 
several important problems related to human social behaviour in conflict environments.  
 
CAS have many properties in common with real social systems, and thus, they may serve as 
models of such systems. For a more elaborate discussion of the applicability of CAS to model real 
social systems, see for instance [1], Chapter 12. The results of the simulation experiments 
presented in Chapter 5, reflects typical behaviour of CAS. Emergent, collective behaviour such as 
group formation were observed in the system arising from the adaptive behaviour of interacting 
agents in a complex social network. An individual is likely to change its opinion if the external 
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social pressure to do so exceeds the individual’s resistance against change. The model shows non-
linear behaviour and sensitivity to initial conditions even though the equation of social influence 
is linear (Equation (4.3)). Non-linear behaviour is a premise for emergent behaviour. 
 
To succeed in PSO it is regarded as important to win the ‘hearts and minds’ of the civil 
population. To achieve this goal it is necessary with a thorough understanding of the social 
system and how social behaviour can be influenced in a favourable direction by various actions. 
From an OR perspective CAS models can be used to support knowledge development related to 
various aspects of human social behaviour in conflict environments. More traditional simulation 
techniques applied in OR are not capable of simulating the behaviour of human systems very 
well. CAS models are complementary to these models, and thus, can be useful to provide a more 
complete decision basis. CAS models may give insight into the behaviour of social systems and 
important factors driving system behaviour. Further, they may also be applied to explore possible 
effects of different actions carried out to impact social behaviour. However, these models do not 
have the level of accuracy necessary to calculate consequences in an absolute manner, but they 
may be useful to narrow the range of plausible behaviour outcomes in certain situations.  
 
To make a CAS model useful to a specific operation it is necessary to adapt it to the situation of 
interest. The purpose of the present model is not to simulate opinion formation in a real society, 
but to explore the potential of multi-agent simulation models to simulate CAS. However, in 
principle it should be possible to model for instance the support to the peace process in an area in 
the northern part of Afghanistan. Here people participate in various networks determined by for 
instance family, religious, and ethnical affiliations. Some of these networks are governed by 
strong leaders such as landowners, religious leaders (mullahs), and warlords, which traditionally 
have a high status and hence a large impact on the opinion formation in the society. People’s 
susceptibility for external influence depends on their social status, cultural factors, the security 
situation, living standard, and the social situation. Triandis framework of human behaviour 
(Chapter 3.3) may serve as a guide for modelling these factors. Accessibility to data of 
sufficiently high quality about all relevant aspects of the system is necessary to be able to build 
realistic and credible models of social behaviour. Thus, it is necessary to emphasise data 
collection and data modelling (see [28]).  
 
Although CAS models seem to have potential to support analysis of various aspects of human 
social systems there are still significant challenges to sort out. This kind of simulations is an 
immature field of science, but a growing interest within the defence research community is 
observed.3 A major challenge is to obtain confidence in the model and its results. This is a 
general problem faced when developing models, but it seems to be particularly hard for models 
involving human systems. The process of validation is performed to convince ourselves and 
others that the model is a good and sufficient representation of reality, i.e. its correctness and 
completeness. We may get confidence in the model if it is capable of mimicking typical 

 
3 Both our partners within the ANNCP collaboration, dstl (UK) and TNO (Nl), are doing work within this 
field. Dstl seems to put emphasise on using CAS in relation with models of command and control (C2), 
while TNO are looking at different ways to exploit CAS, among others in decision trainers.  
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behaviour of human systems that are exposed to similar scenarios. The models may be validated
if the results of the simulation experiments can be explained by empirical studies and/or by sound 
theoretical models. There exist empirical studies supporting the sub models used in this repo
see for instance [13;29] for the scale-free BA network model, [17] for the Triandis model and 
[18] for the social impact model. However, when the goal is to simulate opinion formation in a 
real society, e.g. in Afghanistan, there is a lack of adequate empirical studies and theories that can 
be used to validate the model. In this case a minimum of confidence may be established through 
combining available data with expert opinions and testing the models on different

6.3 Further work 

The present model is relatively simple and some suggestions for further development of the sub 
models are discussed in Chapter 6.1. Different models of agent interactions and behaviour sho
be explored to assess their applicability to study real human systems. For instance Deffaunt’s 
consensus model and Axelrod’s model of dissemination of culture (described in Chapter 3.4.2
Chapter 3.1) are combined behaviour an
s
 
Artificial societies are more advanced models of human societies where agents are allowed to 
move around on a landscape with resources where they interact and act to meet their desig
[20]. In this case the networks are dynamic and agents
re
 
In order to strengthen the confidence in the model described in Chapter 4 it should be applied
real case, for instance related to the ISAF operations in Afghanistan. The succes

7 Conclusions 
The aim of this study is to explore and assess the applicability of complex adaptive systems 
(CAS) models to model human social behaviour in conflict environments. This study gives 
limited insight into the wide field of CAS models, but based on our findings and review of 
relevant literature we conclude that multi-agent simulation model
fo
 
A premise for good decision making in a complex environment is a decision basis containing 
information on all relevant aspects of the systems one wants to influence. Currently there is a lac
of operational research (OR) models to support decision making on ‘behavioural targets’, even 
though these targets are emphasised as particularly important to achieve success in peace support 
operations (PSO). Based on the discussion in the previous chapter (Chapter 6), we conclude that 
simulation models of CAS are complementary to other simulation models applied within OR, and 
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The success of such models is dependent on 
e accessibility of relevant and reliable input data, which may be problematic due to the limited 
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that they can be used to provide insight into the behaviour of human social systems and how these 
systems are influenced by different actions. Examples of possible

o Give insight into underlying mechanisms driving system be

o 

o 

o Explain observed behaviour of human social systems 

 
However, to make CAS models applicable to support real-world decision problems it is nece
with further research to gain more experiences with this kind of models. Applying CAS models to 
simulate human social behaviour is an immature field of science. But, a growing interest is 
observed which also include the defence research communities. One major challenge is to f
suitable and acceptabl
v
important challenge. 
 
Further work should focus on applying CAS models to simulate human social behaviour in real 
conflicts, for instance in Afghanistan. There exist a lot of theories, models, and methods that can
be used, but there is a lack of applications on real systems. A future study may develop models 
that are able to recreate observed social behaviour. 
th
access to reliable data sources in areas of conflict. 
 
Further work on applying CAS models would profit from collaborating with other interna
m
p
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Abbreviations 
ABMS  Agent-based modelling and simulation 
BA  Barabasi-Alberts 
CA  Cellular automata 
CAS  Complex adaptive systems 
COA  Courses of action 
MC  Monte Carlo  
OR  Operational research 
PMESII  Political, military, economical, social, infrastructure and information 
PSO  Peace support operations 
SNA  Social network analysis 
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Appendix A  
Table A. 1 gives an overview of different measures used to characterise networks.  
   
Clustering coefficient  The average probability that 

two neighbours of a given 
node are also neighbours of 
each other.   
Measures the degree of 
cliquishness. 
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between pairs of nodes in 
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Closeness Measures how near a node 

is to the other nodes. 
Inverse of the sum of 
geodesic distances between 
agent i and the other N-1 
agents 
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Betweenness Measures the extent to 
which other agents lie on 
the geodesic path between 
pairs of agents in the 
network 
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gjk (ni) is the number of geodesic paths 
between node j and k that contain node i

Cliques Every agent is connected 
every other agent in the 
network 

 

 Table A. 1  Different measures used to characterise networks 
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