FFI/RAPPORT-2004/04383

FFI RAPPORT

Ship detection probability analysis for a possible long-range AIS system

HØYE Gudrun

FFI/RAPPORT-2004/04383

Ship detection probability analysis for a possible long-range AIS system

HØYE Gudrun

FFI/RAPPORT-2004/04383

FORSVARETS FORSKNINGSINSTITUTT Norwegian Defence Research Establishment P O Box 25, NO-2027 Kjeller, Norway

FORSVARETS FORSKNINGSINSTITUTT (FFI)	
Norwegian Defence Research Establishment	

UNCLASSIFIED

P O BOX 25 N0-2027 KJELLER, NORWAY REPORT DOCUMENTATION PAGE		SECURITY CLASSIFICATION OF (when data entered)	THIS PAGE
1) PUBL/REPORT NUMBER	2) SECURITY CLASSIFICAT	ION	3) NUMBER OF
FFI/RAPPORT-2004/04383	UNCLASSIFIED		PAGES
1a) PROJECT REFERENCE	2a) DECLASSIFICATION/DOV	VNGRADING SCHEDULE	46
FFI-III/1002/913	-		
4) TITLE SHIP DETECTION PROBABILI	ΓΥ ANALYSIS FOR A POSS	IBLE LONG-RANGE AIS	SYSTEM
5) NAMES OF AUTHOR(S) IN FULL (surname HØYE Gudrun	first)		
6) DISTRIBUTION STATEMENT Approved for public release. Distr	ibution unlimited. (Offentlig ti	lgjengelig)	
7) INDEXING TERMS IN ENGLISH:	IN NO	RWEGIAN:	
a) <u>AIS</u>	a)	AIS	
b) LRAIS	b) <u>L</u>	LRAIS	
c) Ship detection	c) <u>S</u>	skipsdeteksjon	
d) Detection probability	d) _[Deteksjonssannsynlighet	
e) Space-based surveillance	e) R	Rombasert overvåking	
THESAURUS REFERENCE:			
8) ABSTRACT			
There is an increasing requirement for g optimising the existing Universal Shipbo suggests to do so by implementing; 1) a reporting interval. The analyses show that the suggested sy optimised to handle more than 10 000 sh	orne Automatic Identification S separate VHF channel for LRA stem could be suitable for LRA	System (AIS) for long-range AIS, 2) short LRAIS messag AIS, and that such an LRAIS	AIS (LRAIS), and the set of the s
9) DATE AUTHO This pag	RIZED BY	POSITION	
I I IIS DAS		4	

ISBN 978-82-464-1310-5

SECURITY CLASSIFICATION OF THIS PAGE (when data entered)

UNCLASSIFIED

CONTENTS

		Page
1	INTRODUCTION	7
2	THE AIS SYSTEM	8
3	SPACE-BASED AIS	9
4	A POSSIBLE LRAIS SYSTEM	10
4.1	Separate VHF channel for LRAIS	10
4.2	Short LRAIS messages	10
4.3	Longer ship reporting interval	10
5	THE SHIP DETECTION PROBABILITY EQUATION	11
6	RESULTS	12
6.1	The LRAIS system that uses standard AIS messages	12
6.2	The LRAIS system that uses short LRAIS messages	23
6.3	Comparison of the two LRAIS systems	34
7	DISCUSSION	36
7.1	Ship detection probability, observation time, and number of ships	36
7.2	Number of reports	36
7.3	The intersection point for the ship detection probability curves	37
7.4	The LRAIS system that uses standard AIS messages	38
7.5	The LRAIS system that uses short LRAIS messages	39
7.6	Comparison of the two LRAIS systems	40
7.7	Summary	41
8	SUMMARY	43
APPEI	NDIX	
A	SHORT LRAIS MESSAGES	44
	References	46

Ship detection probability analysis for a possible long-range AIS system

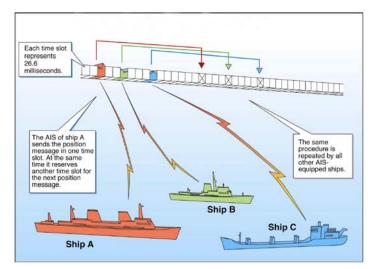
1 INTRODUCTION

Internationally, there is a growing need to develop a global maritime surveillance capability. This stems from increased levels of hazardous cargo transports, smuggling of goods and humans, and growth in global terrorism. New cooperative systems for ship reporting are now being implemented to meet emerging requirements for detection, identification, and tracking.

One such system is the recently introduced Universal Shipborne Automatic Identification System (AIS). AIS is a ship-to-ship and ship-to-shore reporting system based on broadcasting of messages in the maritime VHF band. The AIS messages could also be received from space (1), and two previous reports (2), (3) have studied the ship detection probability for space-based AIS reception. The ship detection probability was found to be better than 99% for up to 900 ships within the AIS sensor's field of view.

There is an increasing requirement for global tracking of sea-going vessels. This report investigates the possibility of optimising the existing AIS system for long-range AIS (LRAIS). The parameters to optimise are the ship reporting interval and corresponding observation time. The optimising of these parameters is done with respect to required ship detection probability and the number of ships that the system must be able to handle. In principle, the system could be optimised to handle 10 000 ships or more with a ship detection probability of better than 99%.

Chapter 2 gives a brief overview of the AIS system. Chapter 3 discusses problems related to the space-based AIS concept, and Chapter 4 presents a possible LRAIS system. The ship detection probability equation is given in Chapter 5, and Chapter 6 presents the results from the optimisation process, followed by a discussion in Chapter 7. Finally, a summary is given in Chapter 8.


2 THE AIS SYSTEM

AIS is a new element under the United Nation's SOLAS convention (5). It is a ship-to-ship and ship-to-shore reporting system that operates on two channels in the maritime VHF band. Ships send reports every 2-10 seconds with detailed information about vessel identity, position, heading, nature of cargo, etc. The range is typically 20 nautical miles for ship-to-ship communication and somewhat larger for ship-to-shore communications in coastal waters. Figure 2.1 illustrates the concept.

Figure 2.1 The AIS ship-to ship and ship-to-shore concept (Courtesy of Kongsberg Seatex).

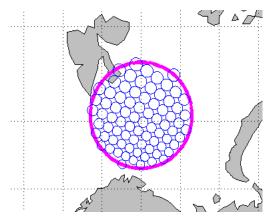

The AIS reporting system is based on the broadcasting of digital messages that are entered into a 1 minute long message frame of 2250 message slots (6). The message entry is synchronized to the universal time coordinated (UTC), and the length of each message is limited to 256 bits. The two VHF maritime mobile channels 87B (AIS1) and 88B (AIS2) are allocated to AIS. Messages are broadcasted alternately on the two channels giving the system a total capacity of 4500 message slots per minute. The reporting between ships within communication range (~20 nm) is organized by a Self-Organizing Time Division Multiple Access (SOTDMA)-algorithm to avoid coinciding transmissions, see Figure 2.2.

Figure 2.2 The AIS SOTDMA principle.

3 SPACE-BASED AIS

AIS signals can be detected from space by a standard AIS receiver for altitudes up to at least 1000 km. However, an AIS sensor in space would cover a much larger area on the ground than the AIS system was originally designed for. The reporting between ships within communication range (~20 nm) is organized by the SOTDMA-algorithm to avoid coinciding transmissions, but from space the AIS sensor will see more than one such organized area as illustrated in Figure 3.1. With many ships within the field of view interference problems will occur, and the AIS messages from some of the ships may not be detected.

Figure 3.1 AIS sensor's field of view (big red circle) with several organized areas (small blue circles).

There are two possible mechanisms for coinciding transmissions:

- 1) AIS messages from different ships are sent in the same message slot.
- 2) AIS messages from different ships are sent in different message slots, but are received simultaneously by the AIS sensor in space due to different signal path lengths.

The AIS system uses a distance delay buffer to prevent overlap between messages that are sent in adjacent timeslots as long as the difference in the signal path length is less than about 200 nm. For an AIS sensor at 1000 km altitude with field of view to the horizon (3630 nm wide swath) the difference in signal path length is about 1400 nm for messages sent from the centre of the observation area compared to messages sent from areas close to the horizon. The distance delay buffer is therefore not sufficient in this case, and both mechanisms for coinciding transmissions must be included in the analyses. Ship detection probability analyses for a space-based AIS system, taking both mechanisms for coinciding transmissions into account, have been performed in a previous report (3).

4 A POSSIBLE LRAIS SYSTEM

It has been shown in a previous report (3) that a space-based AIS system could handle up to about 900 ships. The LRAIS system should, however, be able to handle higher numbers of ships. This could be obtained by implementing the following:

- 1) Separate VHF channel for LRAIS
- 2) Short LRAIS messages
- 3) Longer ship reporting interval

An explanation for these suggestions follows below.

4.1 Separate VHF channel for LRAIS

In order not to interfere with the existing AIS system, a separate VHF channel could be used for LRAIS. The messages transmitted on this channel could then be adapted for LRAIS.

All analyses in this report are based on the assumption that a separate VHF channel is used for LRAIS.

4.2 Short LRAIS messages

Short LRAIS messages that contain only identity and position (± 185 m) could be used instead of standard AIS messages. The content of such short LRAIS messages is described in Appendix A.

The main difference between the short LRAIS message and the standard AIS message is that the short LRAIS message contains a much longer distance delay buffer, allowing signal path differences of up to 1550 nm. This would prevent overlap between adjacent messages for AIS sensor altitudes up to about 1000 km (see Appendix A). The ship detection probability would therefore increase compared to when using standard AIS messages.

We will in this report optimise both for an LRAIS system that uses standard AIS messages and for an LRAIS system that uses short LRAIS messages.

4.3 Longer ship reporting interval

Increasing the ship reporting interval, decreases the number of messages received by the AIS sensor in space and thereby increases the ship detection probability.

We will in this report optimise the ship reporting interval for different numbers of ships and different ship detection probabilities.

5 THE SHIP DETECTION PROBABILITY EQUATION

The equation for the ship detection probability P has been derived in a previous report (3) and is given by

$$P = 1 - \left[1 - \exp\left(-\frac{(1+s) \cdot N_{tot}}{37.5 \cdot n_{ch} \cdot \Delta T}\right)\right]^{\frac{T_{obs}}{\Delta T}}$$
(5.1)

where N_{tot} is the total number of ships within the field of view, ΔT is the ship reporting interval, T_{obs} is the observation time, and $n_{ch} = 1$ is the number of channels. The overlap factor *s* describes the overlap that occurs when AIS messages that are sent in adjacent time slots from ships in different parts of the observation area partly overlap due to differences in the signal path lengths between each of the ships and the AIS sensor. The overlap factor depends on the AIS sensor's altitude and field of view and has the value s = 0.7 for an AIS sensor at 1000 km altitude with field of view to the horizon (3).

When optimising for an LRAIS system that uses standard AIS messages, we will then use the following value for the overlap factor

$$s_{AIS} = 0.7$$
 (5.2)

For an LRAIS system that uses short LRAIS messages the overlap factor is zero, i.e.,

$$s_{LRIT} = 0 \tag{5.3}$$

since in this case the messages are sufficiently short that no overlap will occur between messages that are sent in adjacent time slots from ships in different parts of the observation area.

6 RESULTS

We have optimised both for an LRAIS system that uses standard AIS messages and for an LRAIS system that uses short LRAIS messages. Section 6.1 presents the results for standard AIS messages, and Section 6.2 for short LRAIS messages. Section 6.3 compares the results for standard AIS messages and short LRAIS messages.

6.1 The LRAIS system that uses standard AIS messages

We have calculated the ship detection probability for the LRAIS system that uses standard AIS messages as a function of number of ships for up to 20 000 ships within the field of view. Observation times of $T_{obs} = 5$, 10, 15, 20, 30, 40, 50, and 60 min were used in the calculations. For each choice of observation time, the ship detection probability was calculated for five different ship reporting intervals $\Delta T_n = T_{obs} / n$, where n = 1, 2, 5, 10, and 20 is the number of reports transmitted by the ship during the observation period. Results from the calculations are presented in Figure 6.1-Figure 6.8 and Table 6.1-Table 6.8.

Based on the results, we have determined optimum ship reporting intervals with corresponding observation times for given numbers of ships within the field of view. Ship detection probabilities of better than 99% and 90% respectively were required.

Criteria when choosing the optimum ship reporting intervals were:

- 1) Keep the observation time as short as possible.
- 2) If more than one ship reporting interval can be used (for a given number of ships, ship detection probability, and observation time), choose the ship reporting interval that gives the slowest decline in the ship detection probability curve.

Recommended ship reporting intervals with corresponding observation times are given in Table 6.9 and Table 6.10 for different number of ships within the field of view. The corresponding ship detection probability curves are shown in Figure 6.9 and Figure 6.10.

The calculations were done for an AIS sensor at altitude $H_{sat} = 1000$ km with field of view to the horizon. The calculations assume an even ship distribution.

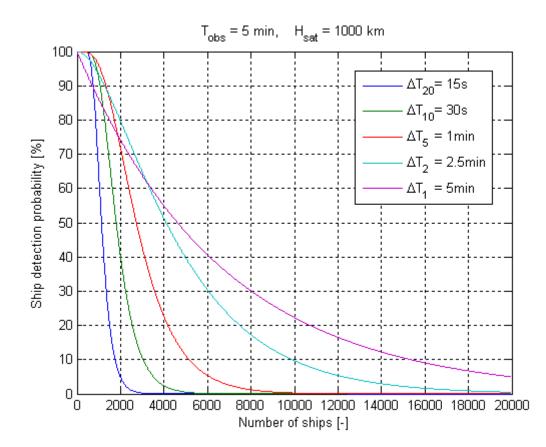


Figure 6.1 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 5$ min. Standard AIS messages are used.

Number of ships	Ship detection probability [%]				
	$\Delta T_{20}=15s$	$\Delta T_{10}=30s$	$\Delta T_5 = 1 \min$	$\Delta T_2 = 2.5 \text{min}$	$\Delta T_1 = 5 \min$
1000	64.0	92.0	95.9	93.3	86.1
2000	4.8	40.1	71.8	79.7	74.1
3000	0.2	10.6	42.8	64.8	63.8
4000	< 0.1	2.5	22.6	51.2	54.9
5000	< 0.1	0.6	11.3	39.7	47.3
6000	< 0.1	0.1	5.5	30.4	40.7
7000	< 0.1	< 0.1	2.6	23.0	35.0
8000	< 0.1	< 0.1	1.2	17.4	30.2
9000	< 0.1	< 0.1	0.6	13.0	26.0
10 000	< 0.1	< 0.1	0.3	9.7	22.4
12 000	< 0.1	< 0.1	< 0.1	5.4	16.6
14 000	< 0.1	< 0.1	< 0.1	3.0	12.3
16 000	<0.1	<0.1	<0.1	1.6	9.1
18 000	<0.1	<0.1	<0.1	0.9	6.7
20 000	<0.1	<0.1	<0.1	0.5	5.0

Table 6.1Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 5$ min. Standard
AIS messages are used.

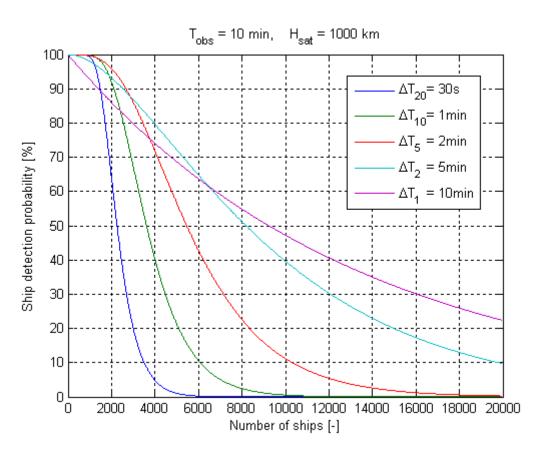


Figure 6.2 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 10$ min. Standard AIS messages are used.

Number of ships	Ship detection probability [%]				
-	$\Delta T_{20}=30s$	$\Delta T_{10}=1$ min	$\Delta T_5 = 2 \min$	$\Delta T_2 = 5 \min$	$\Delta T_1 = 10 \min$
1000	99.4	99.8	99.7	98.0	92.8
2000	64.1	92.0	95.9	93.3	86.1
3000	20.1	67.3	86.0	86.9	79.9
4000	4.9	40.1	71.8	79.7	74.1
5000	1.1	21.3	56.6	72.2	68.8
6000	0.2	10.6	42.8	64.8	63.8
7000	< 0.1	5.1	31.4	57.8	59.2
8000	< 0.1	2.5	22.6	51.2	54.9
9000	< 0.1	1.2	16.0	45.2	50.9
10 000	< 0.1	0.6	11.3	39.7	47.3
12 000	< 0.1	0.1	5.5	30.4	40.7
14 000	< 0.1	<0.1	2.6	23.0	35.0
16 000	<0.1	<0.1	1.2	17.4	30.2
18 000	<0.1	<0.1	0.6	13.0	26.0
20 000	< 0.1	< 0.1	0.3	9.7	22.4

Table 6.2Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 10$ min. Standard
AIS messages are used.

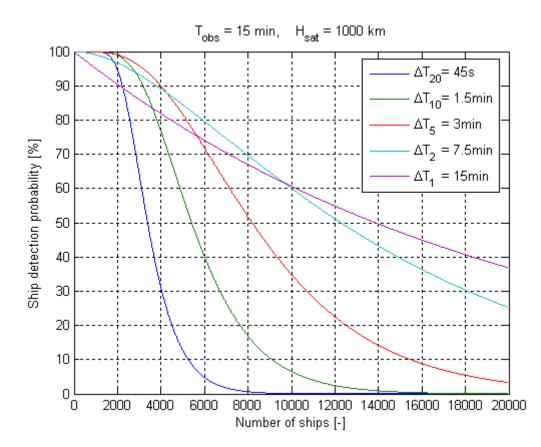


Figure 6.3 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 15$ min. Standard AIS messages are used.

Number of ships	Ship detection probability [%]				
	ΔT_{20} =45s	ΔT_{10} =1.5min	∆T ₅ =3min	$\Delta T_2 = 7.5 \text{min}$	$\Delta T_1 = 15 \min$
1000	>99.9	>99.9	99.9	99.1	95.1
2000	94.6	99.0	99.1	96.7	90.5
3000	64.1	92.0	95.9	93.3	86.1
4000	31.0	76.7	89.9	89.2	81.9
5000	12.7	57.7	81.6	84.6	77.9
6000	4.9	40.1	71.8	79.7	74.1
7000	1.8	26.5	61.6	74.7	70.5
8000	0.7	17.0	51.8	69.7	67.1
9000	0.2	10.6	42.8	64.8	63.8
10 000	< 0.1	6.6	34.9	60.1	60.7
12 000	< 0.1	2.5	22.6	51.2	54.9
14 000	< 0.1	0.9	14.3	43.3	49.7
16 000	<0.1	0.3	8.9	36.4	45.0
18 000	<0.1	0.1	5.5	30.4	40.7
20 000	< 0.1	< 0.1	3.3	25.3	36.8

Table 6.3Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 15$ min. Standard
AIS messages are used.

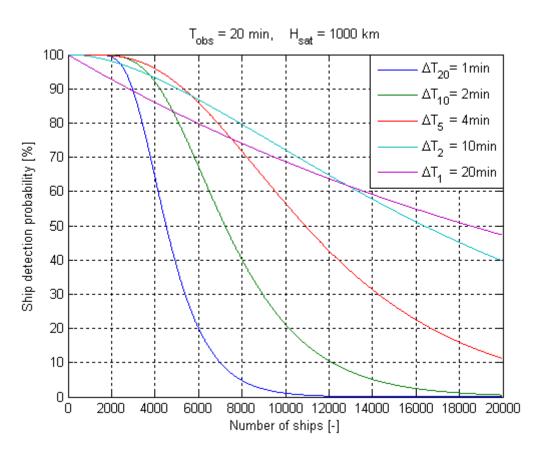


Figure 6.4 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 20$ min. Standard AIS messages are used.

Number of ships	Ship detection probability [%]				
	$\Delta T_{20}=1$ min	$\Delta T_{10}=2min$	ΔT ₅ =4min	$\Delta T_2 = 10 \min$	$\Delta T_1 = 20 \min$
1000	>99.9	>99.9	>99.9	99.5	96.3
2000	99.4	99.8	99.7	98.0	92.8
3000	89.3	98.0	98.5	96.0	89.4
4000	64.1	92.0	95.9	93.3	86.1
5000	38.0	81.2	91.7	90.2	82.9
6000	20.1	67.3	86.0	86.9	79.9
7000	10.0	53.0	79.2	83.4	76.9
8000	4.9	40.1	71.8	79.7	74.1
9000	2.3	29.5	64.1	76.0	71.4
10 000	1.1	21.3	56.6	72.2	68.8
12 000	0.2	10.6	42.8	64.8	63.8
14 000	< 0.1	5.2	31.4	57.8	59.2
16 000	<0.1	2.5	22.6	51.2	54.9
18 000	<0.1	1.2	16.0	45.2	51.0
20 000	<0.1	0.6	11.3	39.7	47.3

Table 6.4Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 20$ min. Standard
AIS messages are used.

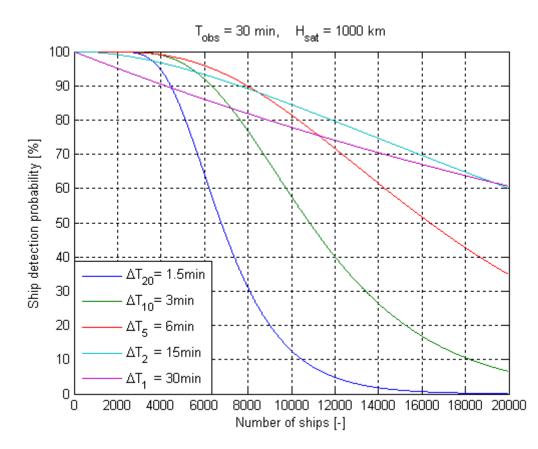


Figure 6.5 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 30$ min. Standard AIS messages are used.

Number of ships	Ship detection probability [%]				
	ΔT_{20} =1.5min	ΔT_{10} =3min	ΔT ₅ =6min	$\Delta T_2 = 15 \min$	ΔT_1 =30min
1000	>99.9	>99.9	>99.9	99.8	97.5
2000	>99.9	>99.9	>99.9	99.1	95.1
3000	99.4	99.8	99.7	98.1	92.8
4000	94.6	99.0	99.1	96.7	90.5
5000	82.1	96.6	97.8	95.1	88.3
6000	64.1	92.0	95.9	93.3	86.1
7000	46.0	85.2	93.3	91.3	84.0
8000	31.0	76.7	89.9	89.2	81.9
9000	20.1	67.3	86.0	86.9	79.9
10 000	12.7	57.7	81.6	84.6	77.9
12 000	4.9	40.1	71.8	79.7	74.1
14 000	1.8	26.5	61.6	74.7	70.5
16 000	0.7	17.0	51.8	69.7	67.1
18 000	0.3	10.6	42.8	64.8	63.8
20 000	< 0.1	6.6	34.9	60.1	60.7

Table 6.5Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 30$ min. Standard
AIS messages are used.

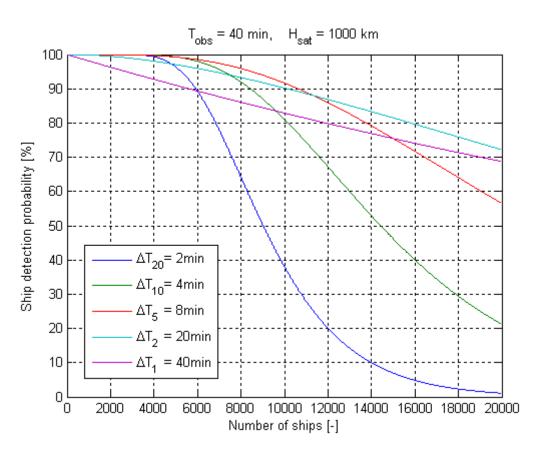


Figure 6.6 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 40$ min. Standard AIS messages are used.

Number of ships	Ship detection probability [%]				
	ΔT_{20} =2min	ΔT_{10} =4min	ΔT ₅ =8min	$\Delta T_2 = 20 \min$	ΔT_1 =40min
1000	>99.9	>99.9	>99.9	99.9	98.1
2000	>99.9	>99.9	>99.9	99.5	96.3
3000	>99.9	>99.9	99.9	98.9	94.5
4000	99.4	99.8	99.7	98.1	92.8
5000	96.4	99.3	99.3	97.1	91.1
6000	89.3	98.0	98.5	96.0	89.4
7000	77.9	95.7	97.4	94.7	87.7
8000	64.1	92.0	95.9	93.3	86.1
9000	50.3	87.1	94.0	91.8	84.5
10 000	38.0	81.2	91.7	90.2	82.9
12 000	20.1	67.3	86.0	86.9	79.8
14 000	10.0	53.0	79.2	83.4	76.9
16 000	4.9	40.1	71.8	79.7	74.1
18 000	2.3	29.5	64.1	76.0	71.4
20 000	1.1	21.3	56.6	72.2	68.8

Table 6.6Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 40$ min. Standard
AIS messages are used.

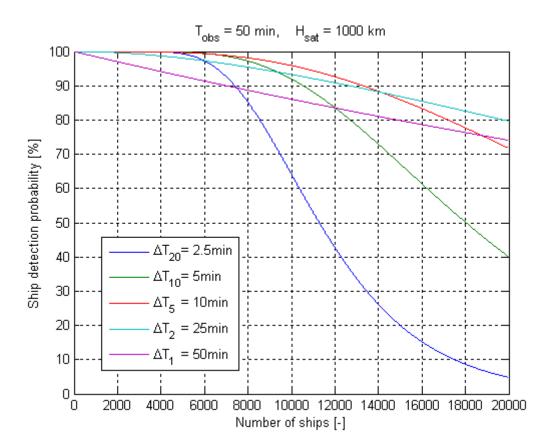


Figure 6.7 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 50$ min. Standard AIS messages are used.

Number of ships	Ship detection probability [%]				
_	ΔT_{20} =2.5min	ΔT_{10} =5min	$\Delta T_5 = 10 \text{min}$	$\Delta T_2 = 25 \text{min}$	$\Delta T_1 = 50 \min$
1000	>99.9	>99.9	>99.9	99.9	98.5
2000	>99.9	>99.9	>99.9	99.7	97.0
3000	>99.9	>99.9	>99.9	99.3	95.6
4000	99.9	>99.9	99.9	98.7	94.2
5000	99.4	99.8	99.7	98.1	92.8
6000	97.3	99.5	99.4	97.3	91.4
7000	92.7	98.7	98.9	96.4	90.0
8000	85.2	97.2	98.1	95.5	88.7
9000	75.3	95.1	97.2	94.4	87.4
10 000	64.1	92.0	95.9	93.3	86.1
12 000	42.7	83.7	92.7	90.9	83.5
14 000	26.2	73.0	88.4	88.3	81.1
16 000	15.3	61.5	83.4	85.5	78.7
18 000	8.7	50.3	77.8	82.6	76.4
20 000	4.9	40.1	71.8	79.7	74.1

Table 6.7Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 50$ min. Standard
AIS messages are used.

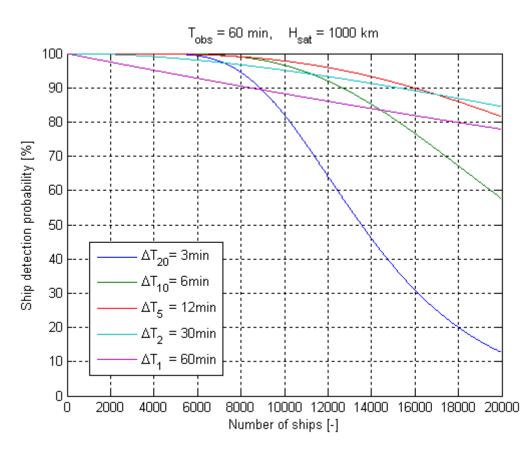


Figure 6.8 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 60$ min. Standard AIS messages are used.

Number of ships	Ship detection probability [%]				
_	ΔT_{20} =3min	ΔT_{10} =6min	$\Delta T_5 = 12 \min$	$\Delta T_2 = 30 \min$	ΔT_1 =60min
1000	>99.9	>99.9	>99.9	99.9	98.8
2000	>99.9	>99.9	>99.9	99.8	97.5
3000	>99.9	>99.9	>99.9	99.5	96.3
4000	>99.9	>99.9	99.9	99.1	95.1
5000	99.9	>99.9	99.9	98.6	94.0
6000	99.4	99.8	99.7	98.1	92.8
7000	97.8	99.5	99.4	97.4	91.6
8000	94.6	99.0	99.1	96.7	90.5
9000	89.3	98.0	98.5	96.0	89.4
10 000	82.1	96.6	97.8	95.1	88.3
12 000	64.1	92.0	95.9	93.3	86.1
14 000	46.0	85.2	93.3	91.3	84.0
16 000	31.0	76.7	89.9	89.2	81.9
18 000	20.1	67.3	86.0	86.9	79.9
20 000	12.7	57.7	81.6	84.6	77.9

Table 6.8Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 60$ min. Standard
AIS messages are used.

Number of ships	Observation time, T obs	Reporting interval, ΔT	$n = T_{obs} / \Delta T$
1000	10 min	2 min	5
2000	15 min	3 min	5
3000	30 min	6 min	5
4000	30 min	6 min	5
5000	40 min	8 min	5
6000	50 min	10 min	5
7000	60 min	12 min	5
8000	60 min	12 min	5
9000	-	-	-
10 000	-	_	_
12 000	_	_	_

Table 6.9Best choice of observation time T_{obs} and ship reporting interval ΔT for differentnumbers of ships within the field of view when requiring a ship detection probability
of better than 99%. Standard AIS messages are used.

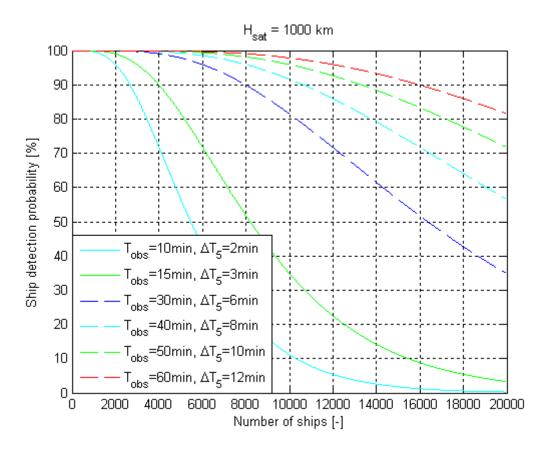


Figure 6.9 Ship detection probability curves for optimal combinations of ship reporting interval ΔT and observation time T_{obs} when requiring a ship detection probability of better than 99%. Standard AIS messages are used.

Number of ships	Observation time, T obs	Reporting interval, ΔT	$n = T_{obs} / \Delta T$
1000	5 min	2.5 min	2
2000	10 min	5 min	2
3000	15 min	7.5 min	2
4000	20 min	10 min	2
5000	20 min	10 min	2
6000	30 min	15 min	2
7000	30 min	15 min	2
8000	40 min	20 min	2
9000	40 min	20 min	2
10 000	40 min	20 min	2
12 000	50 min	25 min	2
14 000	60 min	30 min	2
16 000	_	_	_
18 000	-	-	-
20 000	-	-	-

Table 6.10Best choice of observation time T_{obs} and ship reporting interval ΔT for differentnumbers of ships within the field of view when requiring a ship detection probabilityof better than 90%. Standard AIS messages are used.

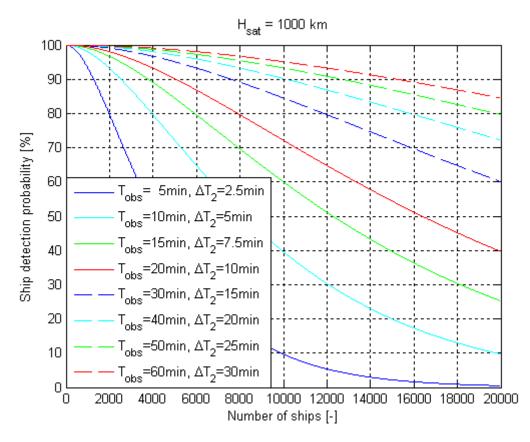


Figure 6.10 Ship detection probability curves for optimal combinations of ship reporting interval ΔT and observation time T_{obs} when requiring a ship detection probability of better than 90%. Standard AIS messages are used.

6.2 The LRAIS system that uses short LRAIS messages

We have calculated the ship detection probability for the LRAIS system that uses short LRAIS messages as a function of number of ships for up to 20 000 ships within the field of view. Observation times of $T_{obs} = 5$, 10, 15, 20, 30, 40, 50, and 60 min were used in the calculations. For each choice of observation time, the ship detection probability was calculated for five different ship reporting intervals $\Delta T_n = T_{obs} / n$, where n = 1, 2, 5, 10, and 20 is the number of reports transmitted by the ship during the observation period. Results from the calculations are presented in Figure 6.11-Figure 6.18 and Table 6.11-Table 6.18.

Based on the results, we have determined optimum ship reporting intervals with corresponding observation times for given numbers of ships within the field of view. Ship detection probabilities of better than 99% and 90% respectively were required.

Criteria when choosing the optimum ship reporting intervals were:

- 1) Keep the observation time as short as possible
- 2) If more than one ship reporting interval can be used (for a given number of ships, ship detection probability, and observation time), choose the ship reporting interval that gives the slowest decline in the ship detection probability curve.

Recommended ship reporting intervals with corresponding observation times are given in Table 6.19 and Table 6.20 for different number of ships within the field of view. The corresponding ship detection probability curves are shown in Figure 6.19 and Figure 6.20.

The calculations are valid for AIS sensor altitudes up to 1000 km and for all ship distributions.

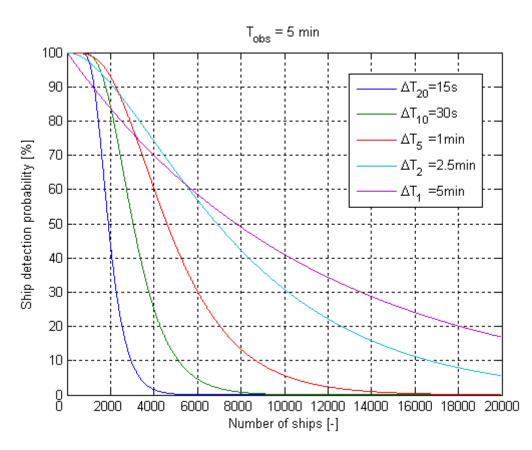


Figure 6.11 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 5$ min. Short LRAIS messages are used.

Number of ships	Ship detection probability [%]				
_	$\Delta T_{20}=15s$	ΔT ₁₀ =30s	$\Delta T_5 = 1 \min$	$\Delta T_2 = 2.5 \text{min}$	$\Delta T_1 = 5 \min$
1000	97.5	99.5	99.4	97.3	91.5
2000	43.9	84.3	92.9	91.1	83.7
3000	9.2	51.3	78.3	82.9	76.6
4000	1.6	25.1	60.4	74.1	70.1
5000	0.3	11.1	43.6	65.3	64.1
6000	< 0.1	4.7	30.2	57.0	58.7
7000	< 0.1	2.0	20.4	49.3	53.7
8000	< 0.1	0.8	13.5	42.4	49.1
9000	< 0.1	0.3	8.8	36.3	44.9
10 000	< 0.1	0.1	5.7	30.9	41.1
12 000	< 0.1	< 0.1	2.4	22.3	34.4
14 000	< 0.1	< 0.1	1.0	15.9	28.8
16 000	< 0.1	<0.1	0.4	11.3	24.1
18 000	< 0.1	<0.1	0.2	8.0	20.2
20 000	<0.1	<0.1	0.1	5.6	16.9

Table 6.11Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 5$ min. Short
LRAIS messages are used.

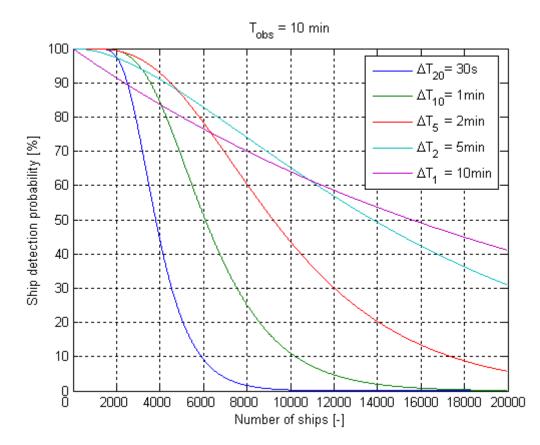


Figure 6.12 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 10$ min. Short LRAIS messages are used.

Number of ships	Ship detection probability [%]				
	$\Delta T_{20}=30s$	$\Delta T_{10}=1$ min	$\Delta T_5 = 2 \min$	$\Delta T_2 = 5 \min$	$\Delta T_1 = 10 \min$
1000	>99.9	>99.9	>99.9	99.3	95.7
2000	97.5	99.5	99.4	97.3	91.5
3000	76.3	95.3	97.3	94.5	87.5
4000	44.0	84.3	92.9	91.1	83.7
5000	21.0	68.2	86.4	87.1	80.1
6000	9.2	51.3	78.3	82.9	76.6
7000	3.9	36.6	69.4	78.5	73.3
8000	1.6	25.2	60.4	74.1	70.1
9000	0.7	16.9	51.7	69.7	67.0
10 000	0.3	11.1	43.6	65.3	64.1
12 000	< 0.1	4.7	30.2	57.0	58.7
14 000	< 0.1	2.0	20.4	49.3	53.7
16 000	<0.1	0.8	13.5	42.4	49.1
18 000	< 0.1	0.3	8.8	36.3	44.9
20 000	< 0.1	0.1	5.7	30.9	41.1

Table 6.12Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 10$ min. Short
LRAIS messages are used.

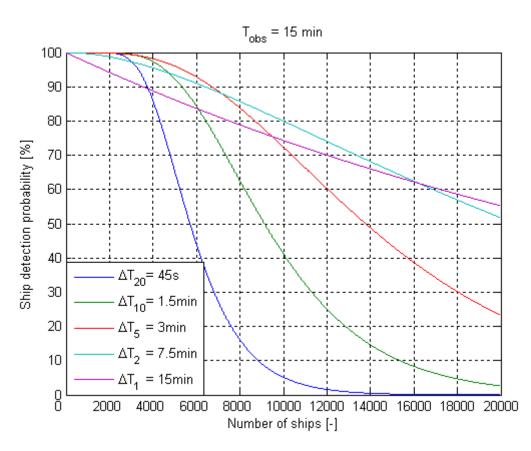


Figure 6.13 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 15$ min. Short LRAIS messages are used.

Number of ships	Ship detection probability [%]				
_	ΔT_{20} =45s	ΔT_{10} =1.5min	ΔT ₅ =3min	$\Delta T_2 = 7.5 \text{min}$	$\Delta T_1 = 15 \min$
1000	>99.9	>99.9	>99.9	99.7	97.1
2000	99.9	>99.9	99.9	98.8	94.2
3000	97.5	99.5	99.4	97.3	91.5
4000	85.9	97.4	98.2	95.5	88.8
5000	65.4	92.4	96.1	93.4	86.2
6000	44.0	84.3	92.9	91.0	83.7
7000	27.3	73.9	88.8	88.5	81.3
8000	16.1	62.5	83.9	85.7	78.9
9000	9.2	51.3	78.3	82.9	76.6
10 000	5.2	41.2	72.5	80.0	74.4
12 000	1.6	25.2	60.4	74.1	70.1
14 000	0.5	14.7	48.9	68.2	66.0
16 000	0.2	8.4	38.8	62.5	62.2
18 000	< 0.1	4.7	30.2	57.0	58.7
20 000	<0.1	2.6	23.3	51.8	55.3

Table 6.13Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 15$ min. Short
LRAIS messages are used.

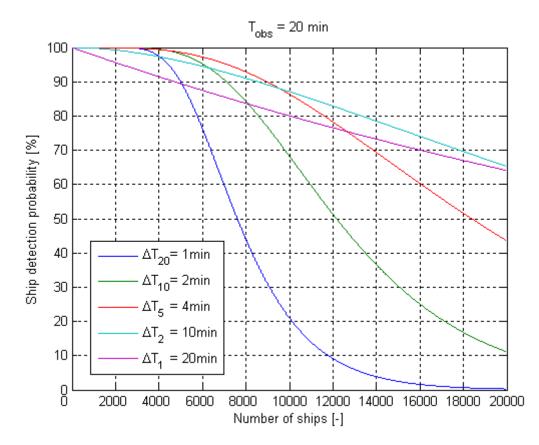


Figure 6.14 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 20$ min. Short LRAIS messages are used.

Number of ships	Ship detection probability [%]				
_	$\Delta T_{20}=1$ min	$\Delta T_{10}=2min$	ΔT ₅ =4min	$\Delta T_2 = 10 \min$	$\Delta T_1 = 20 \min$
1000	>99.9	>99.9	>99.9	99.8	97.8
2000	>99.9	>99.9	>99.9	99.3	95.7
3000	99.8	99.9	99.8	98.4	93.6
4000	97.5	99.5	99.4	97.3	91.5
5000	89.9	98.2	98.6	96.0	89.5
6000	76.3	95.3	97.3	94.5	87.5
7000	59.8	90.7	95.4	92.9	85.6
8000	44.0	84.3	92.9	91.0	83.7
9000	30.9	76.6	89.9	89.1	81.9
10 000	21.0	68.2	86.4	87.1	80.1
12 000	9.2	51.3	78.3	82.9	76.6
14 000	3.9	36.6	69.4	78.5	73.2
16 000	1.6	25.2	60.4	74.1	70.1
18 000	0.7	16.9	51.7	69.7	67.0
20 000	0.3	11.1	43.6	65.3	64.1

Table 6.14Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 20$ min. Short
LRAIS messages are used.

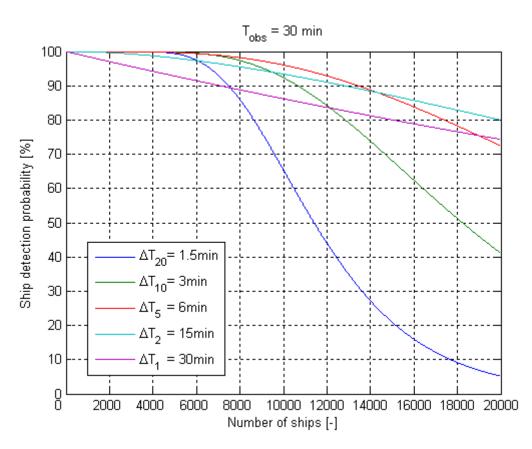


Figure 6.15 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 30$ min. Short LRAIS messages are used.

Number of ships	Ship detection probability [%]				
	ΔT_{20} =1.5min	ΔT_{10} =3min	ΔT ₅ =6min	$\Delta T_2 = 15 \min$	ΔT_1 =30min
1000	>99.9	>99.9	>99.9	99.9	98.5
2000	>99.9	>99.9	>99.9	99.7	97.1
3000	>99.9	>99.9	>99.9	99.3	95.7
4000	99.9	>99.9	99.9	98.8	94.2
5000	99.4	99.8	99.7	98.1	92.9
6000	97.5	99.5	99.4	97.3	91.5
7000	93.2	98.7	98.9	96.5	90.2
8000	85.9	97.4	98.2	95.5	88.8
9000	76.3	95.3	97.3	94.5	87.6
10 000	65.4	92.4	96.1	93.4	86.2
12 000	44.0	84.3	92.9	91.0	83.7
14 000	27.3	73.9	88.8	88.5	81.3
16 000	16.1	62.5	83.9	85.7	78.9
18 000	9.2	51.3	78.3	82.9	76.6
20 000	5.2	41.2	72.5	80.0	74.4

Table 6.15Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 30$ min. Short
LRAIS messages are used.

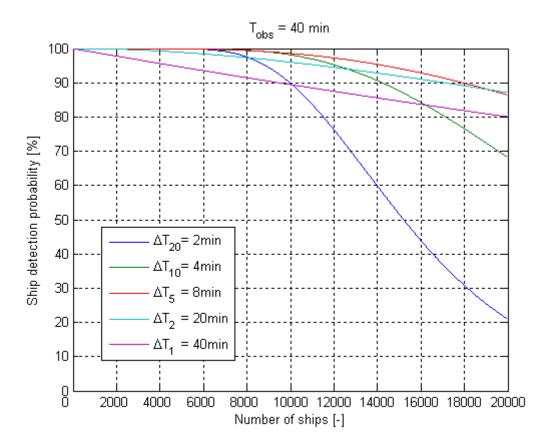


Figure 6.16 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 40$ min. Short LRAIS messages are used.

Number of ships	Ship detection probability [%]				
	ΔT_{20} =2min	ΔT_{10} =4min	ΔT ₅ =8min	$\Delta T_2 = 20 \min$	ΔT_1 =40min
1000	>99.9	>99.9	>99.9	>99.9	98.9
2000	>99.9	>99.9	>99.9	99.8	97.8
3000	>99.9	>99.9	>99.9	99.6	96.7
4000	>99.9	>99.9	>99.9	99.3	95.7
5000	>99.9	>99.9	99.9	98.9	94.6
6000	99.8	99.9	99.8	98.4	93.6
7000	99.1	99.8	99.7	97.9	92.5
8000	97.5	99.5	99.4	97.3	91.5
9000	94.5	99.0	99.1	96.7	90.5
10 000	89.9	98.2	98.6	96.0	89.5
12 000	76.3	95.3	97.3	94.5	87.5
14 000	59.8	90.7	95.4	92.9	85.6
16 000	44.0	84.3	92.9	91.0	83.7
18 000	30.9	76.6	89.9	89.1	81.9
20 000	21.0	68.2	86.4	87.1	80.1

Table 6.16Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 40$ min. Short
LRAIS messages are used.

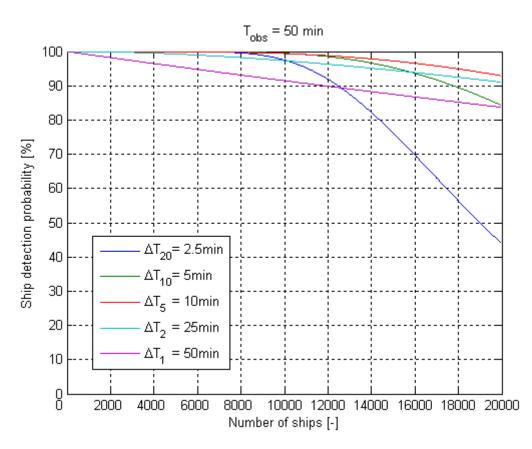


Figure 6.17 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 50$ min. Short LRAIS messages are used.

Number of ships		Ship detection probability [%]				
_	ΔT_{20} =2.5min	ΔT_{10} =5min	$\Delta T_5 = 10 \min$	$\Delta T_2 = 25 \min$	$\Delta T_1 = 50 \min$	
1000	>99.9	>99.9	>99.9	>99.9	99.1	
2000	>99.9	>99.9	>99.9	99.9	98.2	
3000	>99.9	>99.9	>99.9	99.7	97.4	
4000	>99.9	>99.9	>99.9	99.5	96.5	
5000	>99.9	>99.9	>99.9	99.3	95.7	
6000	>99.9	>99.9	99.9	99.0	94.8	
7000	99.9	>99.9	99.9	98.6	94.0	
8000	99.6	99.9	99.8	98.2	93.1	
9000	98.9	99.7	99.6	97.8	92.3	
10 000	97.5	99.5	99.4	97.3	91.5	
12 000	92.0	98.5	98.8	96.3	89.9	
14 000	82.3	96.7	97.9	95.1	88.3	
16 000	69.8	93.7	96.6	93.9	86.7	
18 000	56.5	89.5	94.9	92.5	85.2	
20 000	44.0	84.3	92.9	91.0	83.7	

Table 6.17Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 50$ min. Short
LRAIS messages are used.

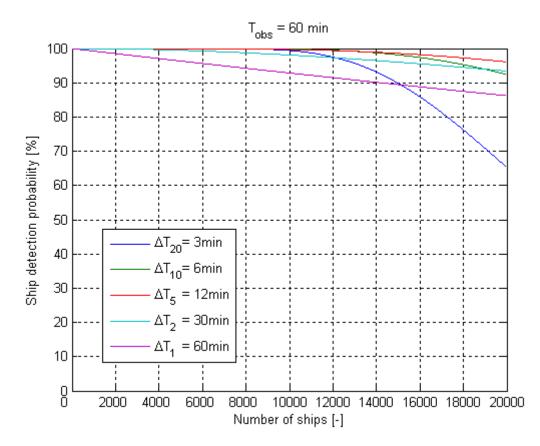


Figure 6.18 Ship detection probability as a function of number of ships within the field of view for different ship reporting intervals ΔT . The observation time is $T_{obs} = 60$ min. Short LRAIS messages are used.

Number of ships	Ship detection probability [%]				
	ΔT_{20} =3min	ΔT_{10} =6min	$\Delta T_5 = 12 \min$	$\Delta T_2 = 30 \min$	ΔT_1 =60min
1000	>99.9	>99.9	>99.9	>99.9	99.2
2000	>99.9	>99.9	>99.9	99.9	98.5
3000	>99.9	>99.9	>99.9	99.8	97.8
4000	>99.9	>99.9	>99.9	99.7	97.1
5000	>99.9	>99.9	>99.9	99.3	96.4
6000	>99.9	>99.9	>99.9	99.0	95.7
7000	>99.9	>99.9	99.9	98.8	94.9
8000	99.9	>99.9	99.9	98.4	94.2
9000	99.8	99.9	99.8	98.1	93.6
10 000	99.4	99.8	99.7	97.3	92.9
12 000	97.5	99.5	99.4	96.5	91.5
14 000	93.2	98.7	98.9	95.5	90.1
16 000	85.9	97.4	98.2	94.5	88.8
18 000	76.3	95.3	97.3	94.5	87.5
20 000	65.4	92.4	96.1	93.4	86.2

Table 6.18Ship detection probability for different numbers of ships within the field of view and
different ship reporting intervals ΔT . The observation time is $T_{obs} = 60$ min. Short
LRAIS messages are used.

Number of ships	Observation time, T obs	Reporting interval, ΔT	$n = T_{obs} / \Delta T$
1000	5 min	1 min	5
2000	10 min	2 min	5
3000	15 min	3 min	5
4000	20 min	4 min	5
5000	30 min	6 min	5
6000	30 min	6 min	5
7000	40 min	8 min	5
8000	40 min	8 min	5
9000	40 min	8 min	5
10 000	50 min	10 min	5
12 000	60 min	12 min	5

Table 6.19Best choice of observation time T_{obs} and ship reporting interval ΔT for differentnumbers of ships within the field of view when requiring a ship detection probabilityof better than 99%. Short LRAIS messages are used.

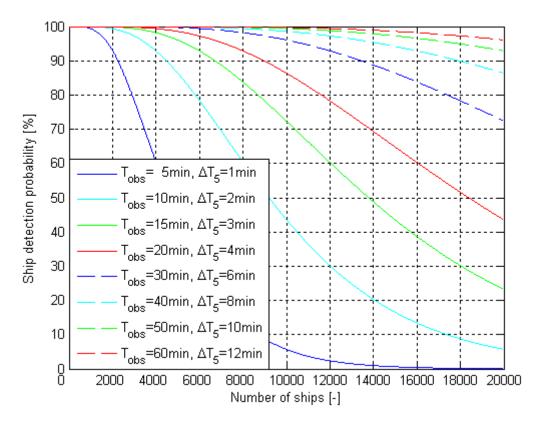


Figure 6.19 Ship detection probability curves for optimal combinations of ship reporting interval ΔT and observation time T_{obs} when requiring a ship detection probability of better than 99%. Short LRAIS messages are used.

Number of ships	Observation time, T obs	Reporting interval, ΔT	$n = T_{obs} / \Delta T$
1000	5 min	5 min	1
2000	5 min	2.5 min	2
3000	10 min	5 min	2
4000	10 min	5 min	2
5000	15 min	7.5 min	2
6000	15 min	7.5 min	2
7000	20 min	10 min	2
8000	20 min	10 min	2
9000	30 min	15 min	2
10 000	30 min	15 min	2
12 000	30 min	15 min	2
14 000	40 min	20 min	2
16 000	40 min	20 min	2
18 000	50 min	25 min	2
20 000	50 min	25 min	2

Table 6.20Best choice of observation time T_{obs} and ship reporting interval ΔT for differentnumbers of ships within the field of view when requiring a ship detection probability
of better than 90%. Short LRAIS messages are used.

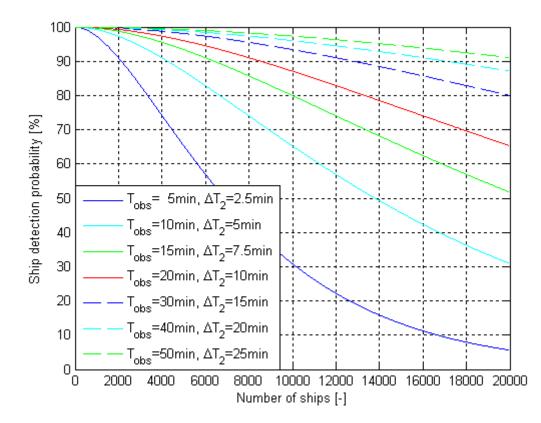


Figure 6.20 Ship detection probability curves for optimal combinations of ship reporting interval ΔT and observation time T_{obs} when requiring a ship detection probability of better than 90%. Short LRAIS messages are used.

6.3 Comparison of the two LRAIS systems

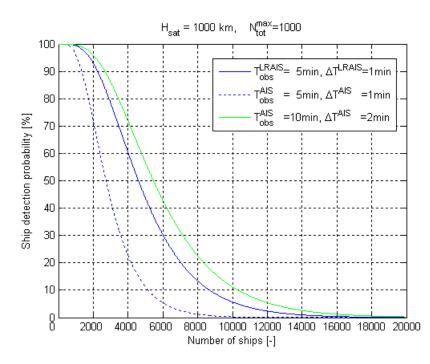


Figure 6.21 Ship detection probability curves that are optimised for up to 1000 ships within the field of view and a ship detection probability of better than 99%. Green line shows results for standard AIS messages and blue line for short LRAIS messages. The blue dotted line shows results for standard AIS messages when using the same ship reporting interval and observation time as for short LRAIS messages.

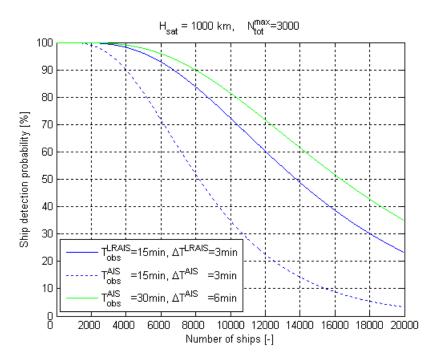


Figure 6.22 Ship detection probability curves optimised for up to 3000 ships within the field of view with a ship detection probability of better than 99%. Green line shows results for standard AIS messages and blue line for short LRAIS messages. The blue dotted line shows results for standard AIS messages when using the same ship reporting interval and observation time as for short LRAIS messages.

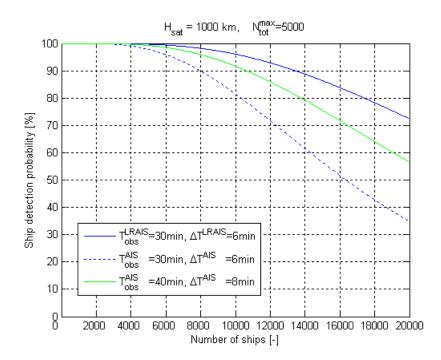


Figure 6.23 Ship detection probability curves optimised for up to 5000 ships within the field of view with a ship detection probability of better than 99%. Green line shows results for standard AIS messages and blue line for short LRAIS messages. The blue dotted line shows results for standard AIS messages when using the same ship reporting interval and observation time as for short LRAIS messages.

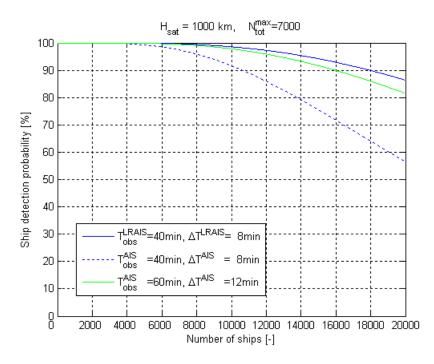


Figure 6.24 Ship detection probability curves optimised for up to 7000 ships within the field of view with a ship detection probability of better than 99%. Green line shows results for standard AIS messages and blue line for short LRAIS messages. The blue dotted line shows results for standard AIS messages when using the same ship reporting interval and observation time as for short LRAIS messages.

7 DISCUSSION

We have performed analyses to optimise the existing AIS system for LRAIS. We have studied both an LRAIS system that uses short LRAIS messages and an LRAIS system that uses standard AIS messages. Figure 6.1-Figure 6.8 and Table 6.1-Table 6.8 present the results for the LRAIS system that uses standard AIS messages. Figure 6.11-Figure 6.18 and Table 6.11-Table 6.18 present the results for the LRAIS system that uses short LRAIS messages.

We will first discuss some general properties of the system in Sections 7.1-7.3. These properties are the same for both LRAIS systems. We will then proceed to discuss the specific results for each of the two LRAIS systems in Sections 7.5-7.6. Finally, we give a short summary in Section 7.7.

7.1 Ship detection probability, observation time, and number of ships

From Figure 6.1-Figure 6.8 and Figure 6.11-Figure 6.18 we see that *increasing* the number of ships *decreases* the ship detection probability for given observation time and ship reporting interval. This result can also be found directly from Equation (5.1).

We further see that *increasing* the observation time *increases* the ship detection probability for given number of ships and ship reporting interval. Figure 6.1, Figure 6.2, and Figure 6.7 show the ship detection probability curves for observation times of 5, 10, and 50 min respectively. For 4000 ships within the field of view and a ship reporting interval of 5 min the corresponding ship detection probabilities are 55%, 93%, and 100%. This result can also be found directly from Equation (5.1).

Finally, we notice that *increasing* the observation time *increases* the number of ships that the system can handle with a given ship detection probability. Figure 6.1, Figure 6.2, and Figure 6.7 show the ship detection probability curves for observation times of 5, 10, and 50 min respectively. For a ship detection probability of 90% and a ship reporting interval of 5 min the corresponding numbers of ships that the system can handle are 700, 2500, and 10 500.

7.2 Number of reports

Figure 6.1-Figure 6.8 and Figure 6.11-Figure 6.18 illustrate the behaviour of the ship detection probability curves with respect to the number of reports transmitted from a ship during the observation period. Each figure shows the ship detection probability curves for several different numbers of reports.

We first notice that *low* numbers of reports give a *slower* decline in the ship detection probability curve than high numbers of reports. Further, we see that *low* numbers of reports give a *higher* ship detection probability when there are *many* ships within the field of view, while *high* numbers of reports give a *higher* ship detection probability when there are *few* ships within the field of view.

The number of reports *n* turns out to be a crucial parameter for the overall system performance and must be fine tuned in order to achieve optimum system performance. It relates directly to the ship reporting interval ΔT and the observation time T_{obs} through the formula

$$n = \frac{T_{obs}}{\Delta T} \tag{7.1}$$

If the number of reports is *too high*, the system will receive very many reports from each ship during the observation time. The system will then become saturated, and this results in a *decrease* in the ship detection probability. On the other hand, if the number of reports is *too low*, the system will receive so few reports from each ship that it may easily fail to detect the ship at all, and the ship detection probability again *decreases*.

Careful analyses were performed to determine the optimum choice of number of reports for the system. Table 6.9-Table 6.10 present the results for the LRAIS system that uses standard AIS messages. The results are based on analyses of Figure 6.1-Figure 6.8 and Table 6.1-Table 6.8. Table 6.19-Table 6.20 present the results for the LRAIS system that uses short LRAIS messages. The results are based on analyses of Figure 6.11-Figure 6.18 and Table 6.11-Table 6.18.

Table 6.9 (standard AIS messages) and Table 6.19 (short LRAIS messages) show that when requiring a ship detection probability of 99%, the optimum number of reports is $n_0=5$. This is the same both for the LRAIS system that uses standard AIS messages and the LRAIS system that uses short LRAIS messages. On the other hand, when requiring a ship detection probability of only 90%, the optimum number of reports decreases to $n_0=2$ (see. Table 6.10 and Table 6.20).

The optimum number of reports is dependent on the requirement to the ship detection probability and seems to decrease when the requirement decreases. Analyses have further shown that the optimum choice of number of reports for the system is independent of the observation time, see also Figure 6.1-Figure 6.8, Figure 6.11-Figure 6.18, Table 6.1-Table 6.8, and Table 6.11-Table 6.18.

7.3 The intersection point for the ship detection probability curves

The analyses have revealed some interesting characteristics of the intersection points for the ship detection probability curves.

From Figure 6.1-Figure 6.8 (standard AIS messages) we notice that the ship detection probability curves for *two different ship reporting intervals* seem to always intersect for the same *number of ships* independently of how long the observation time is. Figure 6.11-Figure 6.18 (short LRAIS messages) show similar behaviour. Information about the intersection points for the ship detection probability curves for different pairs of ship reporting intervals ΔT_a and ΔT_b is summarized in

Table 7.1. The table confirms the above observation, and also shows that the ship detection probability at the intersection point increases with increasing observation time. It can be shown analytically that the system will have this behaviour (4), but the analytical proof has not been included in this report.

	$\Delta T_a=1$ min, $\Delta T_b=5$ min			ΔT_a =6min, ΔT_b =30min				
	T _{obs}	N _{tot}	Р	Reference	T _{obs}	N _{tot}	Р	Reference
AIS	5 min	1 900	75%	Figure 6.1	30 min	11 200	76%	Figure 6.5
AIS	10 min	1 900	94%	Figure 6.2	60 min	11 200	94%	Figure 6.8
LRAIS	5 min	3 200	76%	Figure 6.1	30 min	19 000	77%	Figure 6.5
LKAIS	10 min	3 200	94%	Figure 6.2	60 min	19 000	94%	Figure 6.8

Table 7.1Characteristics of the intersection point for the ship detection probability curves for
different pairs of ship reporting interval ΔT_a and ΔT_b . T_{obs} is the observation time,
 N_{tot} is the number of ships within the field of view, and P is the ship detection
probability. Results are shown for both the LRAIS system that uses standard AIS
messages and the LRAIS system that uses short LRAIS messages.

		n _a =2,	, n _b =5			n _a =1,	n _b =10	
	T _{obs}	N _{tot}	Р	Reference	T _{obs}	N _{tot}	Р	Reference
	5 min	1 300	88%	Figure 6.1	5 min	1 200	84%	Figure 6.1
	10 min	2 800	88%	Figure 6.2	10 min	2 400	84%	Figure 6.2
	15 min	4 200	88%	Figure 6.3	15 min	3 700	84%	Figure 6.3
AIS	20 min	5 700	88%	Figure 6.4	20 min	4 800	84%	Figure 6.4
1110	30 min	8 400	88%	Figure 6.5	30 min	7 200	84%	Figure 6.5
	40 min	11 400	88%	Figure 6.6	40 min	9 600	84%	Figure 6.6
	5 min	2 400	88%	Figure 6.1	5 min	2 000	84%	Figure 6.1
	10 min	4 800	88%	Figure 6.2	10 min	4 100	84%	Figure 6.2
LRAIS	15 min	7 100	88%	Figure 6.3	15 min	6 100	84%	Figure 6.3
	20 min	9 600	88%	Figure 6.4	20 min	8 100	84%	Figure 6.4
	30 min	14 300	88%	Figure 6.5	30 min	12 100	84%	Figure 6.5
	40 min	19 000	88%	Figure 6.6	40 min	16 100	84%	Figure 6.6

Table 7.2Characteristics of the intersection point for the ship detection probability curves for
different pairs of numbers of reports n_a and n_b . T_{obs} is the observation time, N_{tot} is
the number of ships within the field of view, and P is the ship detection probability.
Results are shown for both the LRAIS system that uses standard AIS messages and the
LRAIS system that uses short LRAIS messages.

From Figure 6.1-Figure 6.8 (standard AIS messages) we further notice that the ship detection probability curves for *two different numbers of reports* seem to always intersect for the same *ship detection probability* independently of how long the observation time is. Figure 6.11-Figure 6.18 (short LRAIS messages) show similar behaviour. Information about the intersection points for the ship detection probability curves for different pairs of numbers of reports n_a and n_b is summarized in Table 7.2. The table confirms the above observation, and also shows that the number of ships at the intersection point increases with increasing observation time. It can be shown analytically that the system will have this behaviour (4), but the analytical proof has not been included in this report.

7.4 The LRAIS system that uses standard AIS messages

We will now discuss the specific results for the LRAIS system that uses standard AIS messages.

Table 6.9 shows the optimum choice of observation time and ship reporting interval in order to handle a certain number of ships within the field of view when requiring a ship detection probability of **99%** or better. The results are based on analyses of Figure 6.1-Figure 6.8 and Table 6.1-Table 6.8. The optimum choice of number of reports was found to be $n_0 = 5$ for this case. The results show that with an observation time of 15 min the system can handle about 2000 ships within the field of view. This increases to 8000 ships if the observation time is 60 min. Figure 6.9 shows the corresponding optimised ship detection probability curves.

Table 6.10 shows the optimum choice of observation time and ship reporting interval in order to handle a certain number of ships within the field of view when requiring a ship detection probability of **90%** or better. The results are based on analyses of Figure 6.1-Figure 6.8 and Table 6.1-Table 6.8. The optimum choice of number of reports was found to be $n_0 = 2$ for this case. The results show that with an observation time of 15 min the system can handle about 3000 ships within the field of view. This increases to 14 000 ships if the observation time is 60 min. Figure 6.10 shows the corresponding optimised ship detection probability curves.

Table 7.3 summarizes some of the results for ship detection probability requirements of 99% and 90% respectively based on Table 6.9-Table 6.10. The table shows that accepting a lower ship detection probability for the system increases the number of ships that the system can handle.

T _{obs}	N _{tot}		
	P=99%	P=90%	
15 min	2000	3000	
30 min	4000	7000	
60 min	8000	14 000	

Table 7.3Number of ships N_{tot} that can be handled by an LRAIS system that uses standard AIS
messages as a function of different observation times T_{obs} . Results are shown for ship
detection probability requirements of 99% and 90%.

7.5 The LRAIS system that uses short LRAIS messages

We will now discuss the specific results for the LRAIS system that uses short LRAIS messages.

Table 6.19 shows the optimum choice of observation time and ship reporting interval in order to handle a certain number of ships within the field of view when requiring a ship detection probability of **99%** or better. The results are based on analyses of Figure 6.11-Figure 6.18 and Table 6.11-Table 6.18. The optimum choice of number of reports was found to be $n_0 = 5$, which is the same as for the case with standard AIS messages. The results show that with an observation time of 15 min the system can handle about 3000 ships within the field of view.

This increases to 12 000 ships if the observation time is 60 min. Figure 6.19 shows the corresponding optimised ship detection probability curves.

Table 6.20 shows the optimum choice of observation time and ship reporting interval in order to handle a certain number of ships within the field of view when requiring a ship detection probability of **90%** or better. The results are based on analyses of Figure 6.11-Figure 6.18 and Table 6.11-Table 6.18. The optimum choice of number of reports was found to be $n_0 = 2$, which is the same as for the case with standard AIS messages. The results show that with an observation time of 15 min the system can handle about 6000 ships within the field of view. This increases to more than 20 000 ships if the observation time is 60 min. Figure 6.20 shows the corresponding optimised ship detection probability curves.

Table 7.4 summarizes some of the results for ship detection probability requirements of 99% and 90% respectively based on Table 6.19-Table 6.20. The table shows that accepting a lower ship detection probability for the system increases the number of ships that the system can handle.

T _{obs}	N _{tot}		
	P=99%	P=90%	
15 min	3000	6000	
30 min	6000	12 000	
60 min	12 000	>20 000	

Table 7.4Number of ships N_{tot} that can be handled by an LRAIS system that uses short LRAIS
messages as a function of different observation times T_{obs} . Results are shown for ship
detection probability requirements of 99% and 90%.

7.6 Comparison of the two LRAIS systems

From Table 6.9-Table 6.10 and Table 6.19-Table 6.20 we see that the LRAIS system that uses standard AIS messages requires longer observation time than the system that uses short LRAIS messages in order to handle the same number of ships. From Equation (5.1) it can be shown that the relation between the required observation times T_{obs}^{AIS} and T_{obs}^{LRIT} for the two systems is¹

$$T_{obs}^{AIS} = (1+s) \cdot T_{obs}^{LRIT} = 1.7 \cdot T_{obs}^{LRIT}$$

$$(7.2)$$

i.e., the LRAIS system that uses standard AIS messages requires 1.7 times longer observation time than the LRAIS system that uses short LRAIS messages in order to handle the same number of ships.

Figure 6.21-Figure 6.24 compare the ship detection probability curves for the two LRAIS systems. We notice that for the same observation time and ship reporting interval the LRAIS system that uses short LRAIS messages can handle a larger number of ships than the LRAIS system that uses standard AIS messages. From Equation (5.1) it can be shown that the relation between the number of ships N_{tot}^{AIS} and N_{tot}^{LRIT} that can be handled by the two systems is

$$N_{tot}^{LRIT} = (1+s) \cdot N_{tot}^{AIS} = 1.7 \cdot N_{tot}^{AIS}$$
(7.3)

¹ By substituting $\Delta T = T_{obs}/n$ into Equation (5.1) and solving for T_{obs} .

i.e., the LRAIS system that uses short LRAIS messages can handle 1.7 times more ships than the LRAIS system that uses standard AIS messages.

Table 7.5 shows corresponding values of N_{tot}^{AIS} and N_{tot}^{LRIT} for different ship detection probabilities based on Figure 6.22. The table confirms the above result.

Р	P N _{tot} ^{AIS}		Ntot LRAIS / Ntot AIS	
30%	4000	6700	1.7	
60%	7000	12 000	1.7	
90%	10 800	18 000	1.7	

Table 7.5Corresponding values of N_{tot}^{AIS} and N_{tot}^{LRIT} for different ship detection probabilities.The numbers are based on Figure 6.22.

Finally, we notice that the optimum choice of number of reports n_0 for given ship detection probability requirement P is the same for both LRAIS systems, see Table 6.9-Table 6.10 and Table 6.19-Table 6.20.

7.7 Summary

The following general properties of the system were found:

- 1) Increasing the number of ships decreases the ship detection probability.
- 2) Increasing the observation time increases the ship detection probability.
- 3) Increasing the observation time increases the number of ships that the system can handle.
- *4)* The ship detection probability curves *for two different ship reporting intervals* always intersect for the same *number of ships*. The ship detection probability at the intersection point increases with increasing observation time.
- 5) The ship detection probability curves for *two different numbers of reports* always intersect for the same *ship detection probability*. The number of ships at the intersection point increases with increasing observation time.

There exists an optimum value n_0 for the number of reports. This value is $n_0 = 5$ when the ship detection probability requirement is 99% and $n_0 = 2$ when the ship detection probability requirement is 90%.

The LRAIS system that uses short LRAIS messages can handle 1.7 times *more ships* than the LRAIS system that uses standard AIS messages when all other parameters in the system are the same.

The LRAIS system that uses standard AIS messages needs 1.7 times *longer observation time* than the LRAIS system that uses short LRAIS messages to obtain the same system performance.

The analyses have shown that the LRAIS system that uses short LRAIS messages can handle up to 3000 ship with a ship detection probability of 99% when the observation time is 15 min and the ship

reporting interval is 3 min, and up to 12 000 ships when the observation time is 60 min and the ship reporting interval is 12 min. Corresponding numbers for the LRAIS system that uses standard AIS messages are 2000 ships and 8000 ships respectively.

8 SUMMARY

The recently introduced Universal Shipborne Automatic Identification System (AIS) is a ship-toship and ship-to-shore reporting system using the maritime VHF band to broadcast messages that contain detailed information about vessel identity, position, nature of cargo, etc. Previous studies have shown that the AIS messages could be received from space, and that a space-based AIS system could handle up to 900 ships within the field of view with a ship detection probability of better than 99%.

There is an increasing requirement for global tracking of sea-going vessels. This report has investigated the possibility of optimising the existing AIS system for LRAIS, and suggests to do so by implementing the following:

- 1) Separate VHF channel for LRAIS
- 2) Short LRAIS messages
- 3) Longer ship reporting interval

This will increase the ship detection probability and the number of ships that can be handled by the system.

The analyses have shown that the suggested LRAIS system could handle up to 3000 ships with a ship detection probability of 99% or better when the observation time is 15 min and the ship reporting interval is 3 min. Increasing the observation time to 60 min, and the ship reporting interval to 12 min, increases the number of ships that the system could handle to more than 10 000. In principle, the system could be optimised to handle any number of ships by choosing a sufficiently long observation time.

APPENDIX

A SHORT LRAIS MESSAGES

The AIS reporting system is based on the broadcasting of digital messages that are entered into a 1 minute long message frame of 2250 message slots. Each message is limited to 256 bits and occupies a timeslot with length 26.67 ms. A distance delay buffer is used to prevent overlap between adjacent AIS messages for differences in the signal path length of up to about 200 nm (6). For larger differences in the signal path length overlap may occur. This would reduce the ship detection probability for a space-based AIS system.

The idea behind introducing a short LRAIS message is to increase the distance delay buffer so that larger differences in the signal path length can be tolerated without causing overlap between adjacent messages. This is suggested done by reducing the content of the data field in the message since an LRAIS system does not need as detailed information about the ships as the AIS system is currently providing.

The short LRAIS message should contain the following information:

- 1) Identity
- 2) Position ($\pm 185 \text{ m}$)

and possibly also course over ground and speed over ground (7), see Table A.1.

Table A.2 shows the total content of the short LRAIS message (7). The message is 256 bits long, and the data field uses 88 bits while 92 bits are reserved for the distance delay buffer (compared to 12 bits in standard AIS messages). With a distance delay buffer of 92 bits, differences in the signal path length of up to 1550 nm can be tolerated. AIS sensor altitudes up to 1000 km are therefore acceptable for an LRAIS system that is based on the use of short LRAIS messages¹.

Parameter	Number of bits	Description
User ID	30	MMSI number
Position Accuracy	1	Position accuracy flag: 1=high; 0=low
Longitude	18	Longitude in 1/10 min
		$(\pm 180^\circ, \text{East} = \text{positive}, \text{West} = \text{negative})$
Latitude	17	Latitude in 1/10 min
		$(\pm 90^\circ, \text{North} = \text{positive}, \text{South} = \text{negative})$
COG	9	Course over ground in whole degrees
SOG	7	Speed over ground in whole knots
Time Stamp	6	
Total number of bits	88	

Table A.1The content of the data field in the short LRAIS message. This table corresponds to
Table 15a in (6).

Parameter	Number of bits	Description
Ramp up	8	
Training sequence	24	
Start flag	8	In accordance with HDLC $(7E_h)$
Data	88	LRAIS data
CRC	16	In accordance with HDLC
End flag	8	In accordance with HDLC $(7E_h)$
Buffer 1	12	Bit stuffing, repeater delay, and jitter
Buffer 2	92	Distance delay bits
Total number of bits	256	

Table A.2The content of the short LRAIS message. This table corresponds to Table 5 in (6).

¹For AIS sensor altitudes up to about 1000 km the signal path difference between a message received from the area right under the AIS sensor (nadir) and a message received from close to the horizon is less than 1550 nm.

References

- Høye G, Narheim B, Eriksen T, Meland B J (2004): EUCLID JP9.16: Space-based AIS Reception for Ship Identification, FFI/RAPPORT-2004/01328, Restricted distribution (EUCLID PMOU).
- (2) Høye G (2004): (U) Observation Modelling and Detection Probability for Space-based AIS Reception, FFI/RAPPORT-2004/01113, Restricted.
- (3) Høye G (2004): Observation Modelling and Detection Probability for Space-based AIS Reception Extended Observation Area, FFI/RAPPORT-2004/04390.
- (4) Høye G (2006): Space-base AIS Theoretical considerations and system parameter optimization, FFI/RAPPORT-2006/02495
- (5) IMO (1974/1980): "International convention for the Safety of Life at Sea (SOLAS)" Chapter V "Safety of Navigation" Regulation 19.
- (6) ITU, Recommendation, ITU-R M.1371 (2001): "Technical Characteristics for a Universal Shipborne Automatic Identification System using Time Division Multiple Access in the VHF Maritime Mobile Band".
- (7) Ross E Norsworthy, REC Inc, *Private communications*.