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CAVITY EXPANSION THEORY APPLIED TO THE PENETRATION OF HIGH 
SPEED SPHERES INTO WEAK TARGETS 

1 INTRODUCTION 

In this article we focus on the ability of the cavity expansion theory to facilitate wound 
ballistic computations. The Cavity Expansion Theory has in its simplicity constituted the 
foundation of penetration mechanics for more than 50 years. Forrestal [1] revived the theory 
by introducing the S function. Later it has been shown that the S function is not constant, and 
that it is not clear how predictive the theory is. 
 
The cavity expansion theory assumes that the projectile is not deformed during the penetration 
process. At high impact velocities where hydrodynamic forces are large, the cavity expansion 
theory can usually not be used because the projectile deforms upon impact with the target. In 
these cases hydrodynamic theories for the flow of the projectile have to be used. In recent 
years, after the Gulf war, focus has shifted towards penetration of hardened targets using new 
penetrators. When considering for instance a Wolfram Carbide penetrator with a velocity of 
1500m/s, even a concrete target may be considered a soft material, but hydrodynamic forces 
may still play a very important role. 
 
The hydrodynamic forces are to a large extent dominant when projectiles penetrate tissue. In 
this article we study the penetration of steel spheres into soap which is a typical tissue 
simulator. Soap has a negligible mechanical strength at impact velocities of 1000m/s and 
upward. At the same time no turbulence occur for these cases and the flow pattern may be 
considered to be laminar. Use of steel spheres simplify the geometry, and allows analytic 
solutions to be found, at the same time as the numerical computations can be carried out in 2D. 
 
To relate the cavity expansion theory to a penetration problem, on has to find a relation 
between the expansion velocity of the cavity, u, and the velocity of the penetrator, v. For 
spherical noses the relation u=v·cos(θ) is used, where θ  is the angle between the penetration 
direction and a line from the centre of the spherical nose of the penetrator to the surface of the 
spherical nose. This relation is a weak link in the connection between the cavity expansion 
calculations and the penetration process. We will show that the theoretical pressure distribution 
on the penetrator nose does not agree, in the limit that the mechanical strength approaches 
zero, with the theory of incompressible laminar flow. 
 
A series of experiments where steel spheres were shot at soap targets have been carried out [2]. 
Comparison with AUTODYN-2D simulations shows good agreement with recorded projectile 
exit velocities. The simulations and the experiments gave an overall drag coefficient of 0.36, 
while the cavity expansion theory gave 1.5. The pressure distribution on the front of the 
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spheres, as calculated in AUTODYN-2D, was considerably lower than the predictions of the 
cavity expansion theory, except for in the initial phase of the penetration. 
 
If we demand that the penetration theory should correspond with the cavity expansion theory 
when the mechanical strength is dominant, and that it should correspond with the theory for 
laminar flow when the dynamic forces are dominant numerical simulations and experiments 
become reasonably close. 

2 THE EXPERIMENTAL SET-UP 

In figure 2.1 the experimental set-up used by Krogh and Omholt [2] is shown. 
 

 

Figure 2.1  The experimental set-up (gun) used by Krogh and Omholt [2]. 

 
The velocity before and after penetration was measured by cross correlating signals from two 
coils in the front and in the back. Wound profiles where registered afterwards by cutting the 
soap block into two. 
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Figure 2.2 Soap block after being penetrated by a steel sphere at an initial velocity of 1258 
m/s (the length scale is in mm). Length:23 cm,width:19.5 cm, quadratic in shape. 

3 THEORETICAL BACKGROUND-THE DRAG COEFFICIENT 

In this section we shall give a short description of the cavity expansion theory and the theory 
of laminar flow around a sphere. 
 
The cavity expansion theory for a spherical projectile is based on a spherical cavity expanding 
in an infinite medium (figure 3.1). Computation of the radial stress in an elastic incompressible 
ideal plastic target gives: 
 

def

rr rrp sσ = − +                                     (3.1) 
 
The pressure is given by [3]: 
 

uru
2
3p 0

2
0

mod
&ρρ −−=                                             (3.2) 

 
where “mod” means a model assumption and “def” means a definition. The last part of the 
expression on the right hand side is negligible. 
 
The mechanical part of the radial stress is according to the cavity theory [3] given by:  
 















+=

Y
2Glog1Y

3
2s

mod

rr      (alternative a)                              (3.3)  
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or: 
 







=

Y
2GYlog

9
7s

mod

rr               (alternative b)                                              (3.4) 

 
where 
 
u: radial velocity of the cavity wall 
ρ0: density of the target 
Y: yield limit for the target 
G: shear modulus for the target 
r: radius of the spherical cavity 
 
 
 
                 
                                                               u 
 
                                              (a) 
                                                              r 
                               
               
                                                                                    

Figure 3.1 Cavity expansion in an infinite medium. 

 
The cavity expansion velocity now has to be related to the penetration velocity. For a 
penetrator with a spherical nose the following assumption is made [3]: 
 

( )θcosvu
mod
=                                                                                                                     (3.5) 

where  
θ: angle between the direction of penetration and a line from the centre of the sphere to the cavity 
    surface ( figure 3.2) 
v: penetration velocity 
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)

 
 
                                           v 
 
                                                                       d            u 
                                                                                       Target 
                                                                                                           θ: 
 
 
 
 
 

Figure 3.2 The relation between the penetration velocity and the cavity expansion velocity. 

 
The force that decelerates the projectile can now be decomposed into two parts, Fpc from 
inertia (the hydrodynamic pressure) and Fsc from the stiffness of the material. 
 
By integrating over the sphere surface we get:  
 

( scpc

def
FFF +=                                                                                                                      (3.6) 

 

( ) ( ) ( ) ( )( c

c

θρθθθθρπ
θ

42
0

0

22
0

2
pc cos1vA

4
3dsincoscos

2
3vR2F −== ∫ )                                  (3.7) 

where 
 
R: radius of the spherical nose 
A: πR2, projected area of the spherical nose 
 
θc in the initial phase depends on the degree of penetration, and is given by: 
  

def x,arccos 1
2 Rc cc Min πθ θ  = = −   


                                                                                   (3.8) 

 
where  
 
x: penetration depth 
 
For a deviatoric part given by alternative a, we then have: 
 

( ) ( ) ( )( 







−






+=














+= ∫ c

c

θθθθπ
θ

2cos1
Y

2Glog1AY
3
1dsincos

Y
2Glog1Y

3
2R2F

0

2
sc )           (3.9) 
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The drag coefficient that is due to the dynamic forces will then be given by: 
     

( ) ( )( ) (
def pc 4 2 4 )6

pc c c c c
2

0

F 3 1Cd 1 cos 3 O1 2 4v A
2

θ = = − θ = θ − θ + θ
ρ

                                        (3.10) 

 
and the part that is due to the stiffness of the material is given by: 
 

( ) (( cc θθ 2cos1
3
2

Y
2Glog1AY

F
2Cd sc

def

sc −=















+

= ))                                                          (3.11) 

 
After a penetration of length R the critical angle is according to (3.8) given by . Then 
we have from (3.10) and (3.11) that 

c / 2θ = π

 
( )pcCd / 2 3/ 2π =                                                                                                           (3.12) 

 
( )scCd / 2 4 / 3π =                                                                                                            (3.13) 

 
The pressure distribution on the surface of the sphere and Cdpc may be compared to the 
predictions given by the theory of incompressible laminar flow. The pressure around a sphere 
that moves in an incompressible fluid at laminar flow conditions and no slip is given by [4] 
 

( )(2 2
0

1 v 9cos 5
8

p ρ θ= − − )                                                                                            (3.14) 

 
This gives a force of: 
 

( ) ( ) ( )2 2 2 2 4
p 0 0

0

1 1 9F 2 R v 9cos 5 sin cos d A v 1 cos cos 2
8 4 4 4

c

c

θ

π ρ θ θ θ θ ρ θ θ = − = − + 
 ∫

5
c      (3.15) 

 
The drag coefficient is then 
 

( ) ( ) ( ) (
def pc 4 2 )4 6

p c c c c
2

0

F 1 9 5 7Cd 1 cos cos 2 O1 2 4 4 24v A
2

 θ = = − θ + θ = θ + θ + θ 
 ρ

c c                (3.16) 

 
From (3.19) and (3.16) it follow that 
  

pc

0c p

Cd
lim 3

Cdθ →

 
=  

 
                                                                                                            (3.17) 
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This shows that the theoretical pressure distribution on the penetrator nose does not agree with 
the theory of incompressible laminar flow for small angles. 
 
From the material data in appendix A the following relation follows when the projectile leaves 
the soap after penetration: 
 

01.0~
v

s8~
F
F

2
0

rr

pc

sc

ρ
                                                                                                         (3.18) 

 
This shows that the mechanical strength has negligible effect on the deceleration of a sphere. 
In figure 3.3 the drag coefficients from (3.10) (cavity) and (3.16) (lamflow) have been plotted 
as a function of θc up to θc=π/2 when the penetration is larger than R.  Also shown is an 
experimental curve (expflow) from fluid flow [5] at a Reynolds number of 3 10^5. The 
simulated curve is also shown (see next section). 
 

0.25 0.5 0.75 1 1.25 1.5 Angle
-0.1

0.1
0.2
0.3
0.4
0.5

DragCoeff .

lamflow
expflow
autodyn
cavity

 
Figure 3.3 Different drag coefficients as a function of the angle. Cavity multiplied with 1/3. 

4 AUTODYN SIMULATION AND EXPERIMENTAL RESULTS 

 
In this section simulations in AUTODYN-2D will be compared to the experiments. 
 
Figure 4.1 shows the Euler grid of the soap and the Lagrange grid of the spherical steel 
projectile. 
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Figure 4.1 The grid of the target and projectile after 0.1 milli seconds. 

 
In figure 4.2 the velocity of the projectile is shown as a function of penetration depth for shots 
with initial velocities of 1258, 1557 and 1834 m/s, respectively. Simulated exit velocities are in 
good agreement with experiment. 

Figure 4.2 Simulated and experimental velocities as a function of the penetration depth. 

 
In figure 4.3 the simulated normalised pressure (p/ 2

0vρ ) on the front of the projectile is shown 
as a function of the angle when the projectile has penetrated into the region ( semi-infinite) 
where the slip angle should be π/2 according to the cavity expansion theory. The slip angle is 
1.26 rad (72°). We observe from figure 3.3 that the contribution from the pressure to the drag 
coefficient is small for angles larger than 0.7. Figure (4.3) also shows that 1/3 of the pressure 
given from the cavity expansion theory is still too large compared with the simulations. We 
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can see that the laminar fluid pressure is much closer to the simulated pressure for angles less 
than 0.7. Also shown is the experimental result for fluid flow. 
 
 

0.25 0.5 0.75 1 1.25 1.5 Angle

-0.6
-0.4
-0.2

0.2
0.4

Pressure .

lamflow
expflow
autodyn
cavity

 

Figure 4.3 Normalised pressure profiles as a function of the angle at 0.1 ms. Cavity theory 
multiplied with 1/3. 

 
In figure 4.4 the simulated drag coefficients is shown as a function of time. Also shown is the 
simulated drag coefficient in the semi-infinite region (0.36). Based on the observations made 
when doing the simulations on may describe the different parts of the penetration process: 

1. The drag coefficient is dynamic, starting from zero and increases to 1.2 (close to the theory 
for cavity expansion) when the sphere has penetrated one radius. This is caused by the 
effectively increasing cross section of the projectile as it penetrates into the target.  

2. The drag coefficient decreases as the sphere penetrates the target. It reaches a stable value 
of 0.36 when the sphere has penetrated approximately 10 radii into the target.  

3. The drag coefficient remains stable at 0.36 for semi-infinite targets.  

4. The drag coefficient is dynamic and oscillates around the stable value because of pressure 
waves being reflected back from the surface of finite targets. 

5. When the sphere reaches the exit surface of the target the drag coefficient decreases again.  
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Figure 4.4 Drag coefficients for different initial velocities, time in milli seconds. 

5 CONCLUSION/DISCUSSION 
 

The AUTODYN-2D simulations have been found to give results that are in good agreement 
with the experiment, whereas the cavity expansion theory shows poor agreement with the 
experimental results except for in the initial phase of the penetration, before the sphere has 
penetrated one radius into the target. The pressure profile from the cavity expansion theory 
does not agree with the results from the AUTODYN-2D simulations in the phase where a 
stable drag coefficient is observed ( semi-infinite region). 
 
The cavity expansion theory can be improved if the theoretical pressure profile is divided by 3, 
and the slip angle is given by equation (3.8). This gives from figure (3.3) a reduction in the 
dynamic drag coefficient from 1.5 to 0.5 in the semi- infinite area of the penetration process. 
 
Better results can be obtained if the slip angle is calculated more correctly. The cavity 
expansion theory predicts a slip angle of π/2 when the projectile has penetrated more than one 
radius since σrr is positive over the surface of the spherical nose. But by combining the 
solutions obtained by the theory of laminar flow and the cavity expansion theory, we obtain a 
solution that agree with both limiting conditions, v approaches zero or Y approaches zero, that 
is: 
 

( )( rr
22

0 s5cos9v
8
1

+−= crr θρσ )                                                                                      (5.1) 

 
where  is given in equation (3.3) or (3.4). The slip angle can now be computed by letting 
σ

rrs

rr= 0, giving: 
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1
2

rr
2

0

8s 5 x,arccos ,arccos 1
2 v 9

      = = + −         
c cl Min πθ θ

ρ R

                    (5.2) 

 
As shown the mechanical strength of the soap has neglibible influence on the deceleration of 
the projectile for the cases reported here. We thereby have, when x is larger than R: 
 

0.73 (42 )clθ °=                                                                                                                (5.3) 
 
The drag coefficient given from the laminar flow is then: 
 

( ) ( ) ( )41 9 51 cos cos 2 0.22
2 4 4p c c cl l lCd θ θ θ= − + =
 


                                                           (5.4) 

 
which is too low compared with 0.36 from the simulations. We observed in the simulations 
that the contribution to the pressure from angles larger than 0.7 is small. This result indicates 
that an applicable value for the slip angle is  θc=θcl . Inserting this into 1/3 of the cavity result 
gives 

( ) ( )( )4
pc

1Cd 1 cos 0.35
2cl clθ θ= − =                                                                                   (5.5) 

 
This value for the drag coefficient is close to 0.36 observed in the simulations for the semi-
infinite area of the penetration process. An average value over the hole penetration process is 
also approximately 0.36. It is expected that the same should apply for all penetrators with a 
spherical nose. 
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A APPENDIX 

 
The following material parameters were used: 
 
Steel Sphere:  Radius: 3.97m.m. Mass::2.04 g, Yield stress: 1.8 10^9Pa 
Soap:Length: 23cm,width:19.5cm, quadratic,density:1034 kg/m^3, Yield stress: 1. 0 10^6Pa 
Shear modulus: 6.7 10^6Pa,Bulk modulus:2.65 10^9Pa,Pmin=-infinite. 
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