
FFI RAPPORT

DATA ACQUISITION SOFTWARE FOR FABRY-
PEROT BASED FIBER BRAGG GRATING
INTERROGATION HARDWARE

SAGVOLDEN Geir

FFI/RAPPORT-2000/01293

FFIE/711/116

Approved
Kjeller 12 july 2000

Stian Løvold
Director of Research

DATA ACQUISITION SOFTWARE FOR FABRY-
PEROT BASED FIBER BRAGG GRATING
INTERROGATION HARDWARE

SAGVOLDEN Geir

FFI/RAPPORT-2000/01293

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE

1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

FFI/RAPPORT-2000/01293 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 37
FFIE/711/116 -

4) TITLE

DATA ACQUISITION SOFTWARE FOR FABRY- PEROT BASED FIBER BRAGG GRATING
INTERROGATION HARDWARE

5) NAMES OF AUTHOR(S) IN FULL (surname first)

SAGVOLDEN Geir

6) DISTRIBUTION STATEMENT

Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
IN ENGLISH: IN NORWEGIAN:

a) Fiber optic sensors a) Fiberoptiske sensorer

b) Data acquisition b) Datainnsamling

c) c)

d) d)

e) e)

THESAURUS REFERENCE: INSPEC 1995

8) ABSTRACT

This report documents the data acquisition software developed during project 711 “Fiberoptisk Skrogovervåkning” for
interrogation of Fabry-Perot filter based fiber Bragg grating interrogation hardware. The report describes the interface
with hardware, the RT Linux real time driver for communication with hardware, the software for processing the data,
file formats and error correction procedures.

9) DATE AUTHORIZED BY POSITION
This page only

12 july 2000 Stian Løvold Director of Research

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

Munin
ISBN-82-464-0460-1

5

CONTENTS

1 INTRODUCTION 7

2 IMPLEMENTATION 8

2.1 Hardware 8

2.2 Choice of operating system 9

2.3 Configuring the RT-Linux OS kernel 9

2.4 The kernel module rtepphandler.o 10

2.4.1 Initialization 11

2.4.2 Hardware communication protocol 11

2.4.3 Interrupt request handler 11

2.4.4 Control request handler 12

2.5 Class CFp 12

2.5.1 Initialization 13

2.5.2 Controlling the hardware 13

2.5.3 Data retrieval 13

2.5.4 Data correction 14

2.5.5 Reference feedback 14

2.5.6 Reference protect 14

2.5.7 Normalization 15

2.5.8 Old data files 15

2.6 GUI frontend 16

2.6.1 The data acquisition loop 16

2.6.2 The SetupWidget class 16

2.6.3 The RunWidget class 17

2.6.4 Graphical display tools 17

2.6.5 TheFabryPerot application 18

2.6.6 ThePlayer application 18

2.7 Binary file format 18

2.8 Network data packet format 20

2.9 Qt issues 20

3 USER DOCUMENTATION 20

6

3.1 Data acquisition usingFabryPerot 20

3.1.1 Setting up the hardware 21

3.1.2 Loading thert epp handler kernel module 21

3.1.3 FabryPerot initialization 22

3.1.4 The setup window 22

3.1.5 The data acquisition window 23

3.2 File playback 26

3.2.1 Adding a source 26

3.2.2 The Play interface 26

4 TESTING AND VERIFICATION 28

4.1 Data verification 29

4.2 Sensor fallout correction 29

4.3 Timetag correction 30

4.4 Data recording 31

4.5 Network communication 31

5 CONCLUSION 31

References 32

APPENDIX

A AUXILIARY PROGRAMS 33

A.1 swapdata 33

B FUTURE IMPROVEMENTS 33

B.1 Multi-interface support 33

B.2 Autostart 33

B.3 Performance 34

C LICENSING ISSUES 34

D SYSTEM REQUIREMENTS 35

Distribution list 37

7

DATA ACQUISITION SOFTWARE FOR FABRY–PEROT BASED FIBER BRAGG
GRATING INTERROGATION HARDWARE

1 INTRODUCTION

This report documents version 1.0 of theFabryPerot software developed at Forsvarets
Forskningsinstitutt (FFI) as a part of the Composite Hull Embedded Sensor System
(CHESS) project. CHESSaims at developing a real-time structure monitoring system to be
installed in the Royal Norwegian Navy’s new Skjold-class Fast Patrol Boat, and is a
collaboration betweenFFI and the Naval Research Laboratory (NRL)(1).

TheFabryPerot software replaces the olderMS–DOS based software previously used with
theNRL fiber Bragg grating (FBG) interrogation hardware. It is designed with the
requirements ofCHESSin mind, but may also be used with theNRL hardware for other
projects.

In CHESS, the primary sensors are fiber Bragg gratings (FBGs) measuring strain. AFBG is a
periodic variation in the refraction index along an optical fiber (2, 3). When light from a
broadband source (e g an Erbium-doped fiber amplifier (EDFA)) is sent through it,
wavelengths matching the grating periodicity are reflected at high intensity, while all other
wavelengths are transmitted. When used as a strain sensor, the fiber will stretch as the
substrate it is fixed to elongates, increasing the reflected wavelength. The purpose of the
hardware is therefore to measure the wavelength of the reflected light, and thereby the
strain.

The software receives data from the hardware, and controls its operation. It provides a user
interface that allows the operator to setup the hardware, view graphs of the data as it is
received, and save data for post-processing.

The software must meet some additional requirements when acting as a data source for
real-time structure monitoring inCHESS. Here, a stream of data is passed from the
FabryPerot software and other data sources to analysis software monitoring the ship’s
behavior. The data should therefore be checked for errors at the source to eliminate the need
for error handling further along the processing pathway. Since several data sources may be
in operation simultaneously, high-resolution time tags must be provided for each data point
to allow subsequent alignment of data streams. Means of passing data on a network must be
included as the sources and data analysis may run on different computers.

These requirements made it necessary to replace the original data collection software. The
RT–Linux real-time Unix operating system was chosen for this task.

The implementation consists of three parts; thert epp handler kernel module, which
handles all communication with the hardware, theFabryPerot program for data acquisition
and thePlayer program for file playback.

8

This report describes theFabryPerot software. A technical description of the
implementation is given in Chapter 2 to help further development of the software. A guide
to its operation is given in Chapter 3, while a report on the testing and verification is given
in Chapter 4.

2 IMPLEMENTATION

This chapter provides an overview of theFabryPerot implementation, and discusses the
most important choices made. A description of the hardware is first given, followed by a
discussion of the choice of operating system, an introduction to RT-Linux and a description
of the program architecture. After this introduction, the main features of the different
program parts are described.

This chapter is not intended as a complete description of the algorithms used, but as a guide
to accompany the source code.

2.1 Hardware

The hardware and its operation is described elsewhere (2, 4), but a description of the
concepts important to the software implementation is provided below for the reader’s
convenience.

The hardware scans a band of wavelengths by passing the light from an Erbium–doped fiber
amplifier through a Fabry–Perot narrow bandpass filter. The filter is scanned using an
internal 16-bit ramp generator. The ramp offset voltage is adjusted by the interface program
to include all sensors in the scan. The resulting intensity spectrum has peaks at the
wavelengths reflected by the sensor array. The intensity maxima are found from the zero
crossings of the intensity derivative signal, and the ramp count at these crossings are stored
in an internal memory buffer.

Data may be collected on four channels. Channels 1 and 3 are scanned on the ramp up-scan.
At the end of the scan, an interrupt request (IRQ) is generated, allowing the computer to
retrieve up to 16 maxima positions for each channel. This procedure is repeated for
channels 2 and 4 on the downscan. The scan frequency is fixed at approximately 359 Hz.

Communication with the controlling PC is carried out using the EPP bi-directional parallel
port standard. The controlling software therefore includes an interrupt handler which acts
on the parallel port interrupt requests.

Data is only available in a short (< 100 �s) time interval after the interrupt is generated.
Fast interrupt handling by the operating system is therefore imperative.

9

2.2 Choice of operating system

Even though interrupt requests are generated by hardware, the operating system (OS)
decides the priority and speed at which control is passed to the interrupt handling software.
The quality of theOS scheduler also determines whether “background” tasks, such as saving
data to disks and network communication, may be carried out without losing data points.

Attempts to port the oldMS-DOS software to Windows NT failed both atFFI and theNRL.
The author believes that the reason was that the NT operating system did not meet the
criteria for fast interrupt handling, leading to failures in communication. An alternative
explanation may be that printer support embedded in the NT operating system interfered
with communication.

RT-Linux (5) is a patch to the increasingly popular Linux operating system, giving high
priority to interrupt handling. Since Linux is a true multi-tasking system, applications such
as Graphical User Interfaces, data saving and network communications may still run while
time-critical tasks are serviced.

RT-Linux Win-NT MS-DOS
System time resolution 1 �s 1 ms 55 ms
Typical IRQ reaction time < 2 �s — fast
Supports NTP time protocol yes yes no
Supports socket network communication yes yes no

Table 2.1 Comparison of critical parameters for different operating systems

There are additional synchronization requirements when several data sources are working in
parallel. In an offline system, data gathered on different sources should include a common
time reference to properly align the data for later analysis. Synchronization is equally
important in a real-time system.

Software that synchronizes computer clocks using the Network Time Protocol (6) (NTP) is
available for both the Linux and NT operating systems. Here, a time server distributes a
“true” time to its clients via the network. The time server may either be a GPS clock (7)
offering absolute time (UTC) or a computer acting as a master clock. The clients use a
feedback loop to lock their system clocks to the time server. This method gives time
coordination better than 1 ms on a local network.

Data synchronization may then be carried out by reading the system time for every data
point, which is a more effective synchronization method than sampling a common reference
signal.

Although other operating systems that handle these tasks equally well may be available,
RT-Linux was chosen because of the author’s familiarity with Linux, its general availability,
the availability of fast and cheap computer hardware, and its apparent suitability for the task.

10

2.3 Configuring the RT-Linux OS kernel

The Linux operating system is built around a small kernel into which operating system
modules may be loaded when necessary. These modules are drivers that handle various
tasks, such as communication with a particular network card or harddrive.

Some of these modules reference the parallel port. The data acquisition software uses the
parallel port for communication with the hardware, thus all modules and program parts that
may interfere with this communication must be removed from the kernel at compilation.1

These are:

- Floppy, IDE: Parallel port IDE device support.

- Network: PLIP (parallel port) support.

- Character devices: Parallel printer support.

In RT-Linux, the time-critical task is implemented as a kernel module, and thus becomes a
part of the operating system. The kernel module cannot access disk drives or accept user
input, thus a data acquisition program must have two distinct parts; the kernel module and a
user front-end.

These programs communicate using special first in first out (FIFO) memory buffers named
/dev/rtf0 to /dev/rtf63. The kernel module accesses theseFIFOs by special commands,
while the user front-end may access them as ordinary files.

2.4 The kernel module rt epp handler.o

Thert epp handler.o kernel module is ported from theMS-DOS software developed at the
NRL. Its implementation is described in this section, covering initialization, communication
with the parallel port and communication with the user front-end. Additional
documentation may be found in the source code.

The module has two basic tasks. It retrieves data each time the parallel portIRQ fires,
passing them on theFIFO to the user front-end, and acts on requests to set the ramp signal
offset. These events are handled by theirq handler andcontrol handler methods.

1For details on how to compile: See the Linux kernel compilation HOWTO and the RT-Linux documenta-
tion. The kernel was compiled using the standard kernel distribution (http://www.kernel.org/, version 2.0.36)
with the RT-Linux patch applied, and a.config file taken from the RedHat source distribution with parallel
port support removed. Later, the source was ported to RT-Linux version 2.0 and compiled using a pre-patched
version of kernel 2.2.13

11

rt_epp_
handler

CFp

FabryPerot Application

(module)

Operating system

FIFO

queues

Figure 2.1 The kernel module communicates using FIFO queues. In the FabryPerot ap-
plication, the class CFp handles all communication with the kernel module
and the general control of the hardware.

2.4.1 Initialization

All kernel modules contain aninit module()and acleanup module() method, which are
called upon initialization and removal of the module, respectively. Inrt epp handler.o, the
following initialization tasks are carried out:

1. Initialize twoFIFO queues with sizes 128k (data) and 4k (control).

2. Set the parallel port register to0x10, enablingIRQs.

3. Set theirq handler method to run at each parallel portIRQ.

4. Set thecontrol handler method to run when the user front-end passes requests on the
controlFIFO (/dev/rtf0).

2.4.2 Hardware communication protocol

Hardware communication is invariably carried out by first setting a message on the parallel
port address latch, and then reading from or writing to the parallel port data latch. Each
communication task is implemented as a separate method. The messages and data flow are
shown in table 2.2.

2.4.3 Interrupt request handler

The irq handler method is called every time the hardware generates anIRQ on the parallel
port. Data is read into asample structure, which subsequently is put on theFIFO queue. The
following tasks are carried out:

12

Operation Message data method
Read buffer 1 0 read word ReadRam1
Read buffer 2 1 read word ReadRam2
Get status 2 read word ReadStatus
Set offset 1 0 write word WriteOffset1
Set offset 2 1 write word WriteOffset2
Write status 2 write byte WriteStatus

Table 2.2 Parallel port communication protocol

1. System time is stored.

2. The number of intensity peaks is stored and ramp direction is retrieved.

3. A new ramp direction is set.

4. Data is retrieved.

5. The collected data are put onFIFO 1.

The Linux kernel was changed in versions 2.2.X, allowing the system time, controlled by
the Network Time Protocol, to be non-monotonic. This is unacceptable for sequence
consistency checks made later on.

To correct for this, the the RT-Linux time, which is monotonic, was included in the
communication format in addition to the system time. This allows the true time to be
estimated in the FabryPerot application by linear interpolation.

2.4.4 Control request handler

Thecontrol handler method is called each time a request is put onFIFO 0. The request
consists of a command (byte) and a message (word). The implemented requests are shown
in table 2.3

Command Message Explanation

1 0 Turn off dataflow toFIFO 1
1 1 Turn on dataflow
2 offset Set offset 1
3 offset Set offset 2
4 — Reset hardware

Table 2.3 Control commands passed to rt epp handler.o on FIFO 0.

13

2.5 Class CFp

TheCFp class is the primary class in the data acquisition software. It contains methods for
controlling the hardware, and provides data for the graphical frontend. CFp is independent
of the graphical frontend, and is intended as a driver for the hardware.

2.5.1 Initialization

TheCFp() constructor is called with the configuration file name as an argument. The
configuration file contains information on operation of the hardware and the conversion
from raw data to strain values. The information must be available to the constructor as a
text file having the following format:

derivative limit (for Derivative Limit correction)

offset 1

offset 2

reference grating number on array 1 (counting from 0)

reference setpoint

M00 Ramp count to wavelength conversion

M01 polynomial factors (Up-scan)

M02

M03

M10 Down-scan

M11

M12

M13

64 sensor equilibrium wavelengths

After construction, the source is selected by calling the overloadedInitialize function. Both
real-time and file playback sources are supported.

2.5.2 Controlling the hardware

Hardware control is carried out by theFIFOstart(), FIFOstop(), SetOffset(int),
GetOffset(int) and EPPreset()methods. The methods check the source type, so calls to
these methods are safe also when playing back a file.

2.5.3 Data retrieval

The int GetData() method loads data from a file orFIFO into thesamp2 structure. A
2see common.h

14

boolean TRUE (or 1) is returned if data is available, 0 is returned otherwise. When reading
from aFIFO, GetData() waits for data available, and always returns 1.

Upon return, raw data is available in thesamp structure, while calculated strains are
available in thestrains structure.

2.5.4 Data correction

If the FlCorrect flag is set, theGetData()methods will attempt to correct the data if sensors
are missing by callingCorrectArray . These instances are detected when the hardware
returns a lower sensor count than that stored instrains.STcount[]. The missing sensor(s) are
then identified by minimizing the sum of the absolute value of the derivatives calling a
recursive search procedure,EvalDiff . It is assumed that the hardware sensor countnfound
is correct, and that thenfound first data points are valid. The best combination is stored in
min index[] upon return, while the sum of derivatives is stored inmin sum.

If FlPersistent is set, it is assumed that the same sensor is missing as long as the sensor
count is constant. This speeds up the search algorithm, but tests have shown that the
assumption is not valid in all cases (see 4.2).

This correction strategy relies on the hardware sensor count being correct. Some instances
of errors in the returned sensor count have been observed. To identify these cases, the
derivative of all data points is calculated byDerivativeLimit() if FlDerivLimit is set. When
a derivative larger than the limit set in the configuration file is encountered, data for the
remaining sensors on the channel is replaced with the previous reading.

Text messages with details of the corrections being made are printed to the console if
FlPrintCorrect andFlPrintDerivLimit is set for fallout and derivative corrections
respectively.

2.5.5 Reference feedback

The Fabry-Perot filter is a piezo–based mechanical filter that may drift during measurement.
Channel 1 should therefore include a reference grating to which the ramp signal may be
locked. This is achieved by changing the ramp signal offset by a fraction of the difference
between the average reading on the reference grating and the target value. The reference
grating and its target value are selected in the configuration file.

The reference grating feedback loop is enabled whenFlLocked is set.

2.5.6 Reference protect

In some cases, for instance when the online correction routine is turned off, the feedback

15

loop may attempt large corrections due to erroneous readings when sensors are missing. If
FlRefProtect is set, changes to the ramp offset are not made if the deviation (in rampcount)
is larger thanREF ERROR BOUND. These instances are counted as reference errors.

2.5.7 Normalization

Strains are calculated relative to some value defined as neutral strain. Neutral strain is
calculated from the average ofNORM NUM AVG measurements3 taken afterFlNormalize
is set. The average values may be written to the configuration file by calling
write setupfile()

2.5.8 Old data files

The sensor counts were not saved in the data format used before June 1999. Thus, they must
be inferred from the data when playing back old files. This is done by setting absolute limits
on the observed values and their derivatives. These values are read from thebandwidth file
passed to theInitialize() method. The expected sensor count must be entered by the user.

Thebandwidth file has the following format

max offset ch1 S0

max derivative ch1 S0

...

max offset ch1 S15

max derivative ch1 S15

max offset ch2 S0

...

max offset ch3 S0

...

max offset ch4 S0

...

The offset is calculated from the average of the firstRAW NUM AVG data points. File
playback should therefore not be started with the correction feature on. If correction of the
entire run is desired, a part of the data file should first be played back with correction off to
calculate the averages, before starting over again with the correction feature on.

3currently 1000

16

2.6 GUI frontend

The user frontend is designed as event-driven software built on the Qt (8) toolkit for
programming graphical user interfaces (GUI). Events are generated either by timers or user
interaction (i.e. pressing buttons etc).

TheGUI uses two primary classes.SetupWidget handles the setup of the hardware, while
RunWidget handles data acquisition. Both classes incorporate a data acquisition loop (see
2.6.1), together with additional methods to control theCFp class. In theFabryPerot
application,SetupWidget is run first, and replaced byRunWidget when hardware setup is
completed. OnlyRunWidget is used in thePlayer application, since no hardware setup is
necessary for file playback.

2.6.1 The data acquisition loop

Qt is in principle an event handling toolkit with an extensive selection of library routines for
generating graphical widgets such as buttons, sliders etc. It maintains a list of methods to be
run following a specific event.

The software uses a Qt timer with0 timeout to calltimerEvent, which launches
CFp::GetData(), to retrieve data as often as possible. This design works as long as
timerEvent is called at a rate at least as fast as data is placed on theFIFO by
rt epp handler.o. This gives an overhead, since a timer event and an event handling
mechanism needs to be initiated for each call toCFp::GetData().

An alternative strategy would be to use the Linux multi-thread feature,4 allowing data
acquisition to run as an infinite loop in a separate process.

2.6.2 The SetupWidget class

The purpose of SetupWidget is to provide the user with an interface to setup the hardware
before data acquisition. Typical setup tasks are:

- Roughly adjust the ramp offset to bring all sensors within the scan range.

- Lock to the reference sensor.

- Normalize to define the zero-strain value.

- Calibrate the ramp-count to wavelength conversion.

All hardware control features are implemented in theCFp class, butSetupWidget provides
an interface to control them.SetupWidget also displays graphics showing the position of the

4LinuxThreads

17

peaks identified by the hardware (see figure 3.2). The positions are given in raw rampcount
values. Each channel is plotted by an instance of theCFbgPos class.

The execution ofSetupWidget is controlled by calls toSetupWidget::timerEvent by Qt as
described in 2.6.1. A counter,irq cnt, is used to update the display of an alternating pair of
channels everyUPDATE FREQ data points, and the current ramp offset value every
REF UPDATE FREQ data points.

2.6.3 The RunWidget class

TheRunWidget class offers real-time display of strain as well as control of theCFp
real-time data correction features.RunWidget also saves data to binary (see 2.7) or ASCII
text files. Calculated strains and raw data are also passed on the network using theChTrans
class(9).

Data retrieval inRunWidget is triggered by calls toRunWidget::timerEvent by the Qt
event handler, as inSetupWidget. Theirq cnt counter controls the frequency of plotting and
the frequency of screen updates.

A time tag consistency check is also carried out inRunWidget::timerEvent . In some
cases,5 its value is 0.01s less than expected and automatically updated.

In some cases where the load on the computer is high, one or more data points may be lost.
Data from the previous reading is therefore filled in the gap ifFlSeqCorr is set, to maintain
a constant sampling rate. If the gap is larger thanSEQ CORR MAX, the correction is not
made.

Messages detailing all sequence corrections are printed to the console if
CRunStatus::FlPrintSeqErr is set.

The methodsFileOpen(), FileClose()andFileAppend() are wrapper functions that call the
appropriate open, close and append functions for the selected file format.
NetworkAppend() copies data to a buffer for later network transmits.

2.6.4 Graphical display tools

Graphical display of calculated strain data is carried out using theCViewStrain and
CStrainGraph classes.CViewStrain contains methods to change the plotting scale of each
graph, whileCStrainGraph plots a graph of the strains.

CStrainGraph maintains a circular buffer of the plotting positions of 512 data points. New
data are added to the buffer by calls to theCViewStrain::StrainUpdate() method in the
RunWidget event loop. The display is updated by a call to theCViewStrain::DoRepaint()
method.

5Typically every 3-4 s

18

The current status of the feedback loop and error counts are printed using theCRunStatus
class. The information is updated by calls toCRunStatus::timerEvent every 0.5s. The
class also contains methods to turn on and off printing of correction details.

2.6.5 TheFabryPerot application

TheFabryPerot application operates in either thesetup or therun mode. Control of the
CFp class is therefore given to eitherSetupWidget or RunWidget by the classCContWidget,
depending on the operating mode. Control is always passed to theSetupWidget class first.

2.6.6 ThePlayer application

Data file playback is implemented to allow using old data files for developing real-time
analysis software for theCHESSproject. In this case, a singlePlayControl class may launch
several instances ofRunWidget, each acting as a separate data source.

Time-coordinated data streams are obtained by setting a maximum time limit for file
playback by callingCFp::SetPlayToTm. If the next record in the file has a timetag larger
than the target time,CFp::GetData will return 0. The time limit is updated by periodic
calls toPlayControl::timerEvent . Accelerated and reduced playback speed is also
implemented. The maximum playback speed depends on the number of sources, the
amount of data correction done etc., so the actual playback speed may in some cases be
slower than the target speed.

Although onlyFabryPerot data sources are implemented at the moment,PlayControl is
designed to allow playback of all sources inheriting theCSourceControl class.

2.7 Binary file format

The binary file format saves both raw data and calculated strains, and is suitable for file
playback. The file format is as follows:

<header>

char Sensor Count MAX ch 1

- " - 2

- " - 3

- " - 4

<Data block>

int timetag (seconds)

int timetag (usec)

19

short sensor count channel 1

- " - 3

short strain ch1 sensor 0

short raw data ch1 sensor 0

.

.

short strain ch1 sensor MAX

short raw data ch1 sensor MAX

short strain ch3 sensor 0

short raw data ch3 sensor 0

.

.

short strain ch3 sensor MAX

short raw data ch3 sensor MAX

int timetag (seconds)

int timetag (usec)

short sensor count channel 2

- " - 4

short strain ch2 sensor 0

short raw data ch2 sensor 0

.

.

short strain ch2 sensor MAX

short raw data ch2 sensor MAX

short strain ch4 sensor 0

short raw data ch4 sensor 0

.

.

short strain ch4 sensor MAX

short raw data ch4 sensor MAX

<Data block>

....

<Data block>

...

Storing calculated strains is not necessary for file playback or post processing since they
may be found given the information in the configuration file. There is also no need to store
the timetag as two integers, since the time is always used as a double precision floating
variable in the system. One should therefore consider changing the file format to reduce

20

filesize.

2.8 Network data packet format

All data received by theRunWidget class are distributed on the network. The network data
packets contain time information and calculated strains in the following format:

<Data block>

double timetag

short strain ch1 S 0

...

short strain ch1 S MAX

short strain ch2 S 0

...

short strain ch3 S 0

...

short strain ch4 S 0

...

Raw rampcount values are transmitted as unsigned short integers using a similar data packet
format.

The port number, data block size, and number of data blocks in each transmitted packet is
selected at construction of theChTrans objects in theRunWidget constructor.

2.9 Qt issues

The Qt library have some added features which may cause unexpected behavior for the
unaware programmer.

- All objects inheriting QWidget are automatically destroyed upon calling the
destructor of their parent.

- Calls torepaint() will call repaint for all children.

3 USER DOCUMENTATION

This chapter documents the operation of thert epp handler kernel module, the
FabryPerot program for data acquisition and thePlayer program for file playback. This
documentation refers to several technical concepts which have been explained in Chapter 2.

21

3.1 Data acquisition using FabryPerot

3.1.1 Setting up the hardware

The hardware has potentiometers to adjust the amplification of the intensity signal and
discrimination level of the derivative signal for each of the four channels. These should be
adjusted whenever the broadband light source or the sensor configuration changes. The
amplification should be set so that the peaks are as large as possible without saturating,
while the discrimination level should be set between the noise level and the smallest
negative peak in the derivative signal. These signals are found on the pin numbers given in
table 3.1.

Signal Pin assignment
Sum Pin 6 on Op-Amp 1
Derivative Pin 6 on Op-Amp 2
Discrimination level (Ch 1&3) Pin 5 on comparator
Discrimination level (Ch 2&4) Pin 12 on comparator

Table 3.1 Hardware pin configuration

3.1.2 Loading thert epp handler kernel module

The kernel module, which carries out communication with the hardware, must be loaded
together with some RT-Linux support modules prior to data collection. Only the super user
may load modules. The following commands must therefore be run before starting the
application:

> su

<enter root passwd>

<Remove old instances of the module>

> /sbin/rmmod rt_epp_handler

> /sbin/rmmod rtl_fifo

> /sbin/rmmod rtl_sched

<Insert kernel modules>

> /sbin/insmod /usr/src/rtlinux/rtl/modules/rtl_fifo.o

> /sbin/insmod /usr/src/rtlinux/rtl/modules/rtl_sched.o

22

Figure 3.1 Choosing the port number and configuration file

> /sbin/insmod ./rt_epp_handler.o

Usually, module loading and unloading are carried out in scripts automatically run at
CHESS user login.

3.1.3 FabryPerot initialization

The user is expected to choose the configuration file and the port number network clients
may connect when startingFabryPerot. Calculated strain values will be transmitted on the
selected (odd) port number, while raw rampcounts are made available on the next port
number.

Most parameters important to the operation of the hardware is stored in the configuration
file. The file format is documented in section 2.5.1. The user is expected to have edited the
following information:

line 1 Derivative limit. This number should be larger than the maximal derivative expected
during measurement, but smaller than the separation (in rampcount) of neighbor
sensors.

line 4 Reference grating number (gratings are counted 0,1,2,3..)

line 5 Reference setpoint. This is the rampcount number the reference is locked to. It should
be chosen so that all gratings are included in the scan.

lines 6-11 Polynomial factors. The rampcount to wavelength conversion factors should be found
by a third-order polynomial fit to wavelength standards (see 3.1.4).

3.1.4 The setup window

The setup window is used for initializing the hardware prior to data collection. The
sequence of operation is as follows:

23

Figure 3.2 The setup window. The rampcounts of the gratings on each array are
shown as vertical lines. The reference grating is shown in red. The broken
line indicates the reference setpoint. The current values of the ramp offsets
are shown as O1 and O2.

1. Adjust ramp offset voltage. The ramp offset voltages O1 and O2 are adjusted using
the “� >” and “� >>” buttons respectively. The purpose of the adjustment is to
position the reference grating close to its setpoint while retaining sufficient dynamic
range of O1 to allow the feedback loop to follow the reference. Ideally, O1 should be
close to 30000.

2. Lock the reference grating to the setpoint. The reference feedback control is started
by pressingRef Lock. It is not possible to proceed to the data acquisition window
when reference lock is off. The sensor count is also stored when pressing this button.

3. Normalize the strain (optional). By pressing normalize, an average of each sensor
reading is calculated. This average is used as the 0-strain value. These values are
obtained from the configuration file if no normalization is done.

4. Save configuration (optional). Saves the normalization and ramp offset values to the
configuration file.

5. Calibrate (optional). This function is used for calibrating the ramp count to
wavelength conversion, printing the average rampcount for each grating.

When the hardware is properly set up and the reference feedback loop makes only small
adjustments (typically< 1 rampcount), the user may proceed to the data acquisition
window by pressingDone.

3.1.5 The data acquisition window

24

Figure 3.3 The data acquisition window

The data acquisition window provides and interface for the acquisition, network distribution
and storage of data. The window is separated in a control part to the left and a graphical
display of strain values to the right.

Data storage control is located in the upper left corner. The program supports native binary
and ASCII file formats. The binary filetype saves all information necessary to play back
files and re-calculate the strains (see 2.7). This should be the standard filetype, since error
detection and correction is possible during post-processing. The ASCII filetype saves time
and strain data in human readable form.

TheSave button turns saving on and off. The destination filename may be entered in the
box. The small button to the right of the box brings up a file selection window. The
application does not allow overwriting old files.

The buttons below theSave group control the error correction routines. The routines are
described in 2.5.4 and 2.6.3, but are outlined briefly below.

- Fallout Correct turns on and off the correction routines for hardware detected sensor
fallout. Data for the previous measurement is used for the missing sensors.

- Derivative limit. This error check is a software consistency check of the returned
data. If the derivative (in rampcount) of a sensor exceeds a threshold set in the

25

configuration file, it is assumed that there was an error in hardware-software
communication, and the missing data points are replaced by the previous readings.

- Persistent. This controls the behavior of the fallout correction routine. If set, the
software will only search for the missing sensors each time the sensor count changes.

- Reference Protect. Erroneous readings of the reference sensor may destabilize the
feedback loop. Reference protect imposes an upper limit on the magnitude of ramp
offset corrections.

- Sequence Correct. High load on the computer (such as turning on/off plotting) may
lead to missing data points. If sequence correct is set, missing sequences will be filled
with previous readings. If the missing sequence is too long, the sequence will not be
filled in.

- Plot turns on/off data plotting.

Some key parameters are displayed below these control buttons.Tm is the sample time (in
seconds UTC).Ofs 1 andOfs 2 are the current value of the ramp offsets,RefOfs is the
correction last made to O1 by the reference feedback loop.RefErr is the number of times
the attempted reference correction was larger than the discrimination level,SeqErr is the
accumulated number of missing data points,DerLim is the communication error rate1 while
count is the accumulated number,Fallout is the accumulated fraction of readings with
missing data, andcurr is the current rate.

The small buttons to the left of these status numbers are used to turn on error message
printing to the console.

Buttons for returning to the setup menu and to quit the application are provided in the lower
left corner.

The strain values for all sensors in an array are shown in four plotting windows. To the left,
the number of gratings and plot scale are shown. The scale is changed using the “+” and
“–” buttons.

To successfully record data, the following procedure should be followed.

1. Check that the number of sensors in each channel is correct.

2. Select the level of data correction. It is recommended thatRef Protect is set.Fallout
correct andDerivative limit should be set when data is processed real-time. Data may
also be filtered for errors during post-processing. It is, however, important to note that
the reference feedback loop may not function well if the data in channel 1 is of poor
quality. Correction should therefore always be used in this case.

3. Select file format and name.
1As a fraction of the total number of data points

26

Figure 3.4 The Player startup window

4. Start saving.

Data are transmitted on the network as long as the data acquisition window is running.
Thus, to transmit data, only steps 1 and 2 have to be completed.

3.2 File playback

Player, the file playback application, is mainly used for transmitting real data for the
development and testing of components in theCHESSreal-time structure surveillance
system. File playback may also be used for offline error filtering and converting the native
binary file format to text files.

3.2.1 Adding a source

Data sources are added by clicking theAddSource button in thePlayer startup window
(figure 3.4). This action brings up a source selection window (figure 3.5). Currently, binary
FabryPerot files are supported. The user should enter the data file name, the configuration
file name and the port number for the data stream. If the old file format is chosen, the user
also has to enter the sensor count for each channel and the name of thebandwidth file (See
2.5.8).

The selection process should be repeated for those data files that should be played
concurrently. Since playback is controlled by time-of-collection, only files recorded
simultaneously should be used.

3.2.2 The Play interface

When the desired number of sources have been selected, playback is started by pressing the
Play button (figure 3.7). The files will start playing at the beginning at maximum speed

27

Figure 3.5 The Player source selection window

Figure 3.6 The Play control window with two sources selected

28

Figure 3.7 The Play control window during playback

until the target time, displayed above the progress bar, is reached. The target time begins at
the largest common start time, and stops at the lowest common stop time. The playback
speed multiplier indicates the desired playback speed, but the actual speed may be lower if
all system resources are consumed. Data are supplied to the a data acquisition window for
each source, which may be operated as described in 3.1.5.

The play control window has a control button for each source.Ref Subtract turns on
reference subtract, subtracting the reference error from all sensor raw data. This is useful in
cases where data were collected without usingReference protect, and the feedback loop
made large erroneous corrections.

The progress bar, as shown in figure 3.7, shows the progress of the target time.2 TheRewind
button is used to resume playing from the start.

4 TESTING AND VERIFICATION

The data acquisition programs have been extensively tested during field measurements in
theCHESSproject, and in laboratory tests both atFFI and theNRL. The programs work
reliably, and have recorded gigabytes of data.

2Provided that the sources keep up with the desired playback speed

29

Figure 4.1 Playback with correction off

4.1 Data verification

Strains have been measured independently using conventional strain gauges, showing a
reasonable agreement with the fiber-optic data acquisition system (10).

4.2 Sensor fallout correction

Most measurement errors may be ascribed to failures in hardware or problems with
measurement design. These include missing sensors due to:

- Low returned intensity. These errors are often due to instabilities in the light source.

- Intensity peak collision. These errors occur when two neighboring peaks cannot be
separated by the hardware.

These errors are detected by the hardware as a lower sensor count. The first error type is
successfully corrected by the software, while the second type may give unpredictable
results for the sensors in question. This is a limitation of the measurement system, and care
should be taken in sensor design to keep the number of such collisions at a minimum.1

1Which is easier said than done....

30

Figure 4.2 Playback with correction on

Figures 4.1 and 4.2 show the results of data correction for a data set where the source
intensity was deliberately turned low to produce numerous errors of the low intensity type.
These tests show that the error correction feature works successfully. However, the
assumption made forPersistent correction, i.e. that the same sensors are missing as long as
the sensor count is constant, is invalid in cases where the error rate is very high. This is due
to frequent flickering of several sensors, leading to events where the missing sensor returns
at the same instant another sensor falls out. Hence, the sensor count is constant while the
missing sensor changes, and correction fails. On the other hand, thePersistent optionmay
be able to track one of the two peaks in a peak collisions, as well as reducing the
computational demands on the computer.

Some cases of hardware communication failure have also been observed. Here, the sensor
count indicates that all gratings have been found, while the data retrieved are clearly wrong.
To correct for these events, data consistency checks should be carried out. This is the
purpose of theDerivative limit correction.

The data correction features have been extensively tested on recorded data and during data
acquisition in the lab, as well as in extensive field tests.

4.3 Timetag correction

Timetag errors, frequent in earlier versions of the data acquisition software, are extremely

31

rare after the FIFO data buffer size was increased from 4k to 128k and the monotonic
RT-linux timer was used as time reference.

4.4 Data recording

Data are normally recorded to a local harddisk. No instances have been observed where data
points have been missing due to recording. Hence, the application is capable of recording a
continuous data stream whose length is only limited by available harddisk space.

Data have been recorded at sea in very harsh vibrational environments. Although storage
reliability ultimately depends on the harddrive specifications, theCHESSsea tests show that
the measurement platform is sufficiently robust for demanding field experiments.

4.5 Network communication

Data may be transferred over the network for realtime analysis. Tests have shown that data
is transferred reliably, and that communication does not interfere with data retrieval.

5 CONCLUSION

Extensive testing show that theFabryPerot software record, play back and correct fiber
optic strain data with high accuracy and reliability. The software contains several features
important to theCHESSsystem which were not available in the originalMS-DOS version.
The software is therefore suited as an element in a future real-time structure surveillance
system.

The RT-Linux operating system is the key to the success, due to its combination of real-time
features with graphics and network support.

32

References

(1) Pran K, Sagvolden G, Farsund Ø, Havsg˚ard G B, Wang G (2000): A summary of
project 711 ”Fiberoptisk skrogoverv˚akning” (CHESS), FFI/RAPPORT-2000/01298,
Forsvarets forskningsinstitutt (Approved for public release. Distribution unlimited).

(2) Davis M A, Bellemore D G, Putnam M A, Kersey A D (1996): Interrogation of 60
fibre Bragg grating sensors with microstrain resolution capability,Electronics Letters
32, 15, 1393–1394.

(3) Pran K (1995): Design of optical fibre Bragg gratings, FFI/RAPPORT-95/05818,
Forsvarets forskningsinstitutt (Approved for public release. Distribution unlimited).

(4) Havsgård G B (1997): Besøk p˚a Naval Research Laboratories, Washington DC, 25.
august til 5. september 1997, , FFI travel report.

(5) Http://www.rtlinux.org/.

(6) Http://www.ntp.org/.

(7) Http://www.truetime.com/.

(8) Http://www.troll.no/.

(9) Sagvolden G (2000): Modular distributed signal processing network for CHESS,
FFI/RAPPORT-2000/01294, Forsvarets forskningsinstitutt (Approved for public
release. Distribution unlimited).

(10) Farsund Ø (1999): Strain measurements - a comparision of strain gauge and fiber
Bragg grating measurements on KNM Skjold, FFI/RAPPORT-99/06462, Forsvarets
forskningsinstitutt (Approved for public release. Distribution unlimited).

(11) Http://www.cygnus.com/.

(12) Http://www.gnu.org/.

33

APPENDIX

A AUXILIARY PROGRAMS

A.1 swapdata

swapdatais a command line program for swapping the byte order in the binary data files to
make them readable bymatlab running on mainframe computers. The command line
options are documented by issuing a-h flag. The program was originally designed by Ole
Henrik Waagaard, but is now re-written by the author. Typical use for new data files is

swapdata -f run00.bin > run00.cbin

while the sensor count has to be included for the old data file format

swapdata -s 7,7,7,10 -f run00.bin > run00.cbin

B FUTURE IMPROVEMENTS

B.1 Multi-interface support

Data acquisition tasks often require monitoring several sensors simultaneously. The
hardware is limited to 63 sensors. Practical restraints, such as the dynamic range of sensors,
may further reduce this number. Therefore, several Fabry-PerotFBG interfaces are used in
parallel for large measurement tasks.

Currently, a dedicated computer is needed to control a singleFBG interface. It is simple to
re-write the software to support several interfaces running on a single computer, however,
the limited time available for retrieving data, CPU-speed, and the number of available
IRQ-lines sets a limit on the number of interfaces that may run concurrently.

B.2 Autostart

To be useful as a constantly running surveillance system, the application should be able to
auto-start and auto configure. The Linux system may be configured to autostart the X
windows system and the application. Autostart of options and auto-configuration may be

34

carried out using a more extensive system of configuration files together with
command-line options.

B.3 Performance

The system is now developed, compiled and tested using the GNU egcs compiler (11).
Performance gains may be earned by using a commercial Pentium optimizing compiler for
Linux, such asCode Fusion (11). Code fusion is benchmarked to produce code 20% faster
than MS Visual C++ and twice as fast as egcs.

C LICENSING ISSUES

Most code written for Linux is licensed under the GNU (12) General Public License (GPL).
This license is a protection for the writers of open source software, restricting others from
patenting or incorporating their code into proprietary software, while developers of open
source software may freely incorporate the code in their applications. The output generated
by running GPL’d program (such as egcs) is not restricted under this license.

When compiling, the programs are linked, statically or dynamically, with the C library.
Legally, this makes the binary output a combined work. To promote commercial use and
standardization of the GNU C library, it is licensed under the Less General Public License
(LGPL), which allows writers of proprietary code to link against LGPL’d libraries.

Qt (8) has a more restrictive license. The Q public license (QPL) grants the users the right
to write open source software linked with the library. Developers of commercial
applications must obtain the Qt Professional Edition, which grants the rights to distribute
proprietary software linked with Qt. One license costs $1550. The licenses are sold on a
per-programmer basis.

The difference between these licenses reflects that GNU is an organization promoting open
source software development, while Troll TECH is a company developing a cross-platform
GUI library for commercial proposes. However, Troll has decided to grant free use of their
libraries for writing open source programs to promote the use of Qt.

Hence, to legally commercialize theFabryPerot application, i.e. as a part of a commercial
structure surveillance system, a Qt Professional license must be obtained.

35

D SYSTEM REQUIREMENTS

The software was tested on machines with the following configuration:

CPU PII-400 / P200
RAM 128 MB
Disk Seagate ST36531A
Parallel EPP
Par. IRQ 7
Par. IO addr 378h
OS Mandrake 5.3
kernel 2.0.36
RT-Linux v1.1

36

37

DISTRIBUTION LIST

FFIE Dato: 12 july 2000
RAPPORTTYPE (KRYSS AV) RAPPORT NR. REFERANSE RAPPORTENS DATO

X RAPP NOTAT RR 2000/01293 FFIE/711/116 12 july 2000
RAPPORTENS BESKYTTELSESGRAD ANTALL EKS

UTSTEDT
ANTALL SIDER

UNCLASSIFIED 41 37

RAPPORTENS TITTEL FORFATTER(E)

DATA ACQUISITION SOFTWARE FOR FABRY-
PEROT BASED FIBER BRAGG GRATING
INTERROGATION HARDWARE

SAGVOLDEN Geir

FORDELING GODKJENT AV FORSKNINGSSJEF: FORDELING GODKJENT AV AVDELINGSSJEF:

EKSTERN FORDELING INTERN FORDELING
ANTALL EKS NR TIL ANTALL EKS NR TIL

Naval Research Laboratory 14 FFI-Bibl
1 Fiber Optic Smart Structures Section 1 Adm direktør/stabssjef
1 V/Gregg Johnson 1 FFIE
1 V/ Sandeep Vohra 1 FFISYS
1 V/ Gary Cogdell 1 FFIBM

Code 5600 1 FFIN
Washington DC 20375
USA 1 Gunnar Wang, FFIE

1 Karianne Pran, FFIE
1 Øystein Farsund, FFIE

1 SFK, Teknisk avdeling 1 Geir Sagvolden, FFIE
1 V/ Steinar Nilsen
1 V/ Atle Sannes 10 Arkiv, FFIE

Postboks 3, Haakonsvern 1 FFI-veven
5086 BERGEN

FFI-K1 Retningslinjer for fordeling og forsendelse er gitt i Oraklet, Bind I, Bestemmelser om publikasjoner
for Forsvarets forskningsinstitutt, pkt 2 og 5. Benytt ny side om nødvendig.

