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Summary Kort sammendrag  
This report summarizes the integration of Machine 
Learning (ML) in modern vehicle safety applications. 
Advances in ML have transformed vehicle safety, shifting 
from traditional rule-based systems to data-driven, 
adaptive technologies. These applications include 
advanced driver assistance, predictive maintenance, real-
time traffic management, and autonomous driving. ML 
encompasses a broad spectrum of methodologies and 
offers flexibility for various implementations, enabling 
customization for a wide range of tasks. However, while 
modern ML approaches easily adapt to diversity in data, 
they also require substantial amounts of data to perform 
effectively. Furthermore, ML introduces several challenges, 
particularly the “black box” problem, which raises ethical 
and regulatory concerns, as well as issues related to 
privacy and cybersecurity. Addressing these challenges 
requires research to improve transparency of models, 
fairness, and trust in ML-driven safety systems. 
Importantly, the growing availability of vehicle- and traffic-
generated data, enabled by Vehicle-to-Everything 
communication and smart city infrastructure, further 
highlights ML’s potential for enhancing vehicle safety. 

Rapporten oppsummerer integreringen av maskinlæring 
(ML) i sikkerhetssystemer til moderne kjøretøy. Den 
senere tids utvikling innen ML har flyttet fokus fra 
tradisjonelle regelbaserte systemer til datadrevne, 
adaptive teknologier i bilers sikkerhetssystemene. Disse 
systemene inkluderer avansert førerassistanse, 
prediktivt vedlikehold, sanntids trafikkstyring, 
monitorering av kjøreradferd og autonom kjøring. ML 
omfatter et bredt spekter av metoder hvilket gir 
fleksibilitet for ulike implementeringer, som videre 
muliggjør mange ulike oppgaver. Moderne ML håndterer 
seg svært godt store variasjoner i data, men krever også 
store mengder data for å prestere optimalt. ML 
introduserer også utfordringer knyttet til “black box” 
problemet til modellene, som etiske og regulatoriske 
bekymringer, samt problemer relatert til personvern og 
cybersikkerhet. Disse utfordringene krever videre 
forskning på transparens i modellene, og rettferdighet 
og tillit til ML-drevne sikkerhetssystemer. Den økende 
produksjonen av kjøretøy- og trafikk-genererte data, fra 
”Vehicle-to-Everything” kommunikasjon og smarte-byer 
infrastruktur, fremhever ytterligere ML sitt potensial i 
videre forbedring av sikkerhet i kjøretøy. 
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Preface 
Machine learning plays a significant role in modern vehicle safety applications. In this report, we 
provide an introduction to the field of machine learning, the types of data typically used in vehicle 
safety applications, and the most prominent approaches and concerns. 

This report is part of the project 302327 Finding a CRItical Speed function ahead of a road section for 
vehicles in motion (CriSp), funded by the Norwegian Research Council. Anders Kielland wrote the 
Introduction and the two sections on Machine Learning Fundamentals and Approaches in Vehicle 
Safety. Anna Piterskaya and Christian Weber wrote the Data Sources section, while Anna Piterskaya 
authored the section on Transparency and Ethical Considerations. 

Oslo, December 2024 
Institute of Transport Economics 

Bjørne Grimsrud Frants Gundersen 
Managing Director Director of Research 
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ENGLISH Summary 
 

• Development in the Machine Learning (ML) field has transformed vehicle safety systems. 
• ML relies on diverse data sources, including vehicle sensors, traffic flow and infrastructure 

data, weather conditions, and historical crash reports. 
• Main ML applications in vehicle safety include: 

o Accident prediction analysis, leading to improved road condition. 
o Real-time adaptive traffic management, optimizing traffic flow. 
o In-vehicle advanced driver assistance systems that support safe vehicle operation. 
o Driver behaviour and fatigue monitoring, detecting drowsiness and distraction. 
o Identification of mechanical failures before they cause accidents. 

• Autonomous vehicle systems, improving perception, planning, and decision-making. 
• Challenges include the "black box" problem, bias in ML models, privacy concerns, and 

regulatory constraints, necessitating explainable AI and stronger cybersecurity measures. 
 

As ML rapidly advances, its integration into modern vehicle safety applications has increased, 
shifting from traditional rule-based systems to more data-driven and adaptive technologies. 
With the growing adoption of ML in sensor-based technology, predictive analytics, real-time 
traffic control, driver behavior monitoring, and autonomous driving, these innovations are 
significantly enhancing road safety and mobility. Key findings show that ML improves accident 
prevention, optimizes traffic management, and advances driver assistance technologies. 

This report provides an overview of the latest advancements in the use of ML in vehicle safety. 
It covers the methodological foundations, the integration of applications in vehicle safety, and 
the ethical and regulatory challenges associated with ML-driven systems. 

ML is a data-driven process and often relies on high-quality and compressive datasets to 
function effectively. Data sources include in-vehicle sensor data from Light Detection and 
Ranging (LiDAR) technologies, radars, cameras, Global Navigation Satellite Systems (GNSSs), 
and accelerometers, as well as traffic and infrastructure data from surveillance cameras and 
smart city platforms. Environmental data are recorded via satellite imagery, weather stations, 
and internet-of-things sensors. Connected vehicle communication, known as Vehicle-to-
Everything (V2X), further enable real-time information sharing between vehicles and 
infrastructure. Proper security and processing efficiency are essential to fully leverage the data 
sources in ML capabilities in vehicle safety systems. 
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ML applications in vehicle safety includes a broad spectrum of approaches and methodology, 
and are used in predictive modelling, anomaly detection, and adaptive decision-making. For 
example, real-time proactive accident prediction methods leverage ML to assess crash risks, 
road conditions, and traffic patterns, allowing dynamic speed limits, traffic signal adjustments, 
and lane direction changes, thus, optimize for a safer traffic flow. Advanced Driver Assistance 
Systems (ADAS) use ML for collision avoidance, lane-keeping, adaptive cruise control, and 
emergency braking. Predictive maintenance and vehicle status monitoring help detect 
mechanical failures, tire wear, and brake issues before they pose safety hazards. The advance-
ment in Neural nets are fundamental in sensor fusion techniques, and object detection and 
perception in complex driving environments. Driver behaviour and fatigue monitoring rely on 
ML-based facial recognition, physiological sensors, and steering pattern analysis to detect 
distraction or drowsiness. Further, personalized safety recommendations analyse individual 
driving styles to provide tailored feedback, using gamification to encourage safer habits. Finaly, 
ML will be essential for autonomous vehicle safety, as self-driving cars must operate in a highly 
dynamic and complex environments, where ML approaches appear to be the only viable 
solution. 

Despite the advancements, ML-driven vehicle safety faces numerous challenges such as data 
privacy, cybersecurity risks, lack of transparency, and regulatory barriers. The “black box” 
nature of ML models necessitates new methodologies for decision verification and trust. Bias 
in ML outcome can result in unjust evaluations of responsibility. Additionally, regulatory 
frameworks must evolve to align AI-based safety decisions with ethical principles and robust 
protection measures. 
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NORSK Sammendrag 
 

• Utviklingen innen maskinlæring (ML) har fundamentalt endret sikkerhetssystemer i 
moderne kjøretøy igjennom forbedret ulykke-forebyggingsanalyse, tilpasset 
trafikkhåndtering, førerovervåkning og autonom kjøretøystyring i sikkerhetskritiske 
situasjoner. 

• ML bruker ulike datakilder, inkludert kjøretøysensorer, trafikkflyt- og infrastrukturdata, 
værdata og historisk ulykkesstatistikk. 

• Sentrale ML-applikasjoner i kjøretøys sikkerhetssystemer inkluderer: 
o Ulykkesprediksjoner, som fører til forbedret veiinfrastruktur. 
o Sanntid adaptive trafikkstyring for optimalisert trafikkflyt. 
o Førerassistensesystemer som tilrettelegger for sikker kjøring. 
o Monitorering av førers atferd og tilstand, inkludert døsighet og distraksjon. 
o Deteksjon av mekaniske feil før potensielle ulykker oppstår. 
o Systemer i autonome kjøretøy, som forbedrer persepsjon, planlegging og 

beslutningstaking. 
• Utfordringer inkluderer "svart boks" problemet, bias i ML-modeller, personvernhensyn og 

regulatoriske begrensninger, som krever forklarbar KI og solide cybersikkerhetstiltak. 

 

Den sener tids økning i bruk av ML i moderne kjøretøys sikkerhetssystemer har før til en 
endring fra tradisjonelle regelbaserte systemer til mer datadrevne og adaptive teknologier. 
Med økende implementeringen av ML i sensorbasert teknologi, prediktiv analyse, sanntids-
trafikkontroll, overvåking av føreradferd og autonome kjøretøy spiller denne utviklingen en 
sentral rolle i trafikksikkerhet og mobilitet. Utviklingen har gitt bedre ulykkesforebygging, 
optimalisert trafikkstyring og en betydelig videreutvikling av førerassistensesystemer. 

Denne rapporten gir en oversikt over anvendelse av ML i kjøretøysikkerhet. Den gjennomgår 
fundamentale prinsipper, forståelse og metoder i ML, integreringen i sikkerhetssystemer og 
etiske og lovmessige utfordringene knyttet til implementering av ML-drevne systemer. 

ML er en datadrevet prosess og er ofte avhengig av store mengder data av høy kvalitet for å 
fungere optimalt. Datakilder inkluderer sensorer som Light Detection and Ranging (LiDAR), 
radarer, kameraer, globale navigasjonssatellittsystemer (GNSS) og akselerometre, samt trafikk-
målinger, overvåkningskameraer og infrastruktur i smarte byer. Omgivelsesdata registreres via 
satellittbilder, værstasjoner og sensorer fra «internett-of-things». Kommunikasjon mellom 
kjøretøy og omgivelsene, kjent som «Vehicle-to-Everything» (V2X), muliggjør sanntidsinforma-
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sjonsdeling mellom biler og infrastruktur. Robuste datasikkerhetssystemer og rask dataproses-
sering er også helt avgjørende for å utnytte MLs fulle potensial ML for sikkerhet i kjøretøy. 

Bruk av ML i kjøretøysikkerhet omfatter et bredt spekter av tilnærminger og metoder innen 
prediktiv modellering, deteksjon av unormaliteter og adaptiv beslutningstaking. For eksempel 
kan sanntids prediksjonsmetoder brukes til proaktiv å vurdere ulykkesrisiko, veiforhold og 
trafikkbildet. Dette muliggjør dynamiske regulering av fartsgrenser, trafikksignal og endringer i 
kjørefeltretning resulterende i optimalisert trafikkflyt med økt sikkerhet. Avanserte førerassi-
stansesystemer (ADAS) bruker ML i kjørefeltholder, adaptiv cruisekontroll og sikkerhetsassi-
stanse. Prediktivt vedlikehold og overvåking av kjøretøystatus oppdager mekaniske feil, dekk-
slitasje og bremseproblemer før de utgjør en sikkerhetsrisikoer. Den sener tids utvikling i 
nevrale nettverk er helt sentral i sensorfusjonsteknikker og objektdeteksjon i komplekse kjøre-
miljøer. Overvåking av bilfører sin atferd og oppmerksomhet er basert på ML-drevet ansikts-
gjenkjenning, fysiologiske sensorer og analyse av kjøretøyets oppførsel på veien. Videre 
analyseres individuelle kjørestiler for å gi personlige tilpassede sikkerhetsanbefalinger, også 
ved hjelp av gamifisering for å oppmuntre til tryggere vaner. Transport utvikler seg i en retning 
av autonom kjøring og vil ML være avgjørende for sikkerheten ettersom selvkjørende biler må 
operere i svært dynamiske og komplekse miljøer, der ML-metoder ser ut til å være den eneste 
funksjonelle løsningen. 

Til tross for fremgang står ML-drevet kjøretøysikkerhet overfor en rekke utfordringer, inkludert 
personvern, cybersikkerhetsrisikoer, mangel på transparens og regulatoriske hindringer. Det er 
utfordrende å forstå hva som foregår inne i en ML-modell, noe som krever nye metoder og 
tilnærminger for beslutningsverifikasjon og tillit til sikkerhetssystemene. Bias i ML-modeller 
kan føre til feilaktig ansvarsfordeling. Regulatoriske rammeverk må videreutvikles for å tilpas-
ses KI-basert beslutningstaking i samsvar med etiske prinsipper og effektive regulering. 
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1 Introduction 
Over the past several decades, the automotive industry has undergone a remarkable technological 
transformation. Once dominated by purely mechanical systems, modern vehicles now feature a wide 
array of electronic components, sensors, and software-driven functions. From early safety systems 
like seatbelts and airbags to today’s sophisticated Advanced Driver Assistance Systems (ADAS) and 
predictive analytics tools, each innovation has contributed to a substantial reduction in road fatalities 
and injuries. Yet, despite these advances, traffic accidents remain a leading cause of death and 
disability worldwide, highlighting the need for ever more effective and proactive safety measures 
(World Health Organization, 2019). 

Machine Learning (ML), a branch of AI focused on enabling computers to learn from data and 
improve over time without being explicitly programmed, has emerged as a key enabler of the next 
generation of vehicle safety solutions. ML algorithms excel at analysing large, complex datasets and 
detecting patterns far beyond the capabilities of traditional rule-based systems. These capabilities 
are particularly relevant in the dynamic and unpredictable environment of road traffic, where vast 
streams of information from sensors, cameras, connected infrastructure, and historical records must 
be processed to ensure timely and accurate decision-making. 

In practice, ML techniques are being integrated throughout the mobility ecosystem. Within the 
vehicle, ML models power systems that detect driver drowsiness or distraction, assist with lane-
keeping, and even predict when critical components require maintenance. Beyond the vehicle, ML is 
instrumental in analysing traffic flows, anticipating accident hotspots, and adapting signal timings to 
reduce congestion and collision risks. Advanced data communication methods, including Vehicle-to-
Everything (V2X) connectivity, further expand the scope of ML’s influence, fostering real-time 
cooperation between cars, infrastructure, and other road users. 

This holistic approach to safety encompasses not only vehicles and their occupants but also the 
broader transportation environment, including vulnerable road users such as pedestrians and 
cyclists. Although the primary focus of this report centres on vehicle applications, it is important to 
note that ML-based detection and prediction technologies can also enhance safety for all who share 
the road. Moreover, as cities become “smarter”, the integration of ML-driven safety strategies with 
intelligent traffic lights, connected signage, and sensor-laden infrastructure holds the promise of 
systemic improvements that extend beyond any single vehicle, potentially reducing accidents at 
intersections, improving travel times, and enhancing overall urban mobility. 

As the industry moves rapidly toward semi- and fully autonomous driving, the importance of ML in 
ensuring safety will only grow. Autonomous vehicles rely heavily on ML-based perception and control 
systems to navigate complex road scenarios reliably. Simultaneously, the widespread deployment of 
connected vehicles and infrastructure generates massive amounts of traffic data, spurring the 
development of increasingly sophisticated predictive models that can foresee and mitigate risks 
before they materialize. 

In the sections that follow, we will explore the technical foundations and applications of ML in traffic 
safety, from predictive modelling and driver behaviour analysis to adaptive traffic management and 
maintenance prediction. We will also consider the ethical, regulatory, and transparency challenges 
that accompany these advanced systems. Through this examination, the report aims to offer a 
comprehensive understanding of how ML is reshaping the landscape of traffic safety, and how it may 
continue to do so in the years to come. 
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1.1 Acronyms 
ABS Anti-lock Braking System 

ADAS  Advanced Driver-Assistance Systems 

AI Artificial Intelligence  

CAN  Controller Area Network 

CNN  Convolutional Neural Network 

EEG  Electroencephalogram 
ESC  Electronic Stability Control  

GDPR General Data Protection Regulation 

GNSS  Global Navigation Satellite System 

LiDAR  Light Detection and Ranging 

LIME  Local Interpretable Model-Agnostic Explanations 

ML  Machine Learning 

NN Neural Network 

OEM  Original Equipment Manufacturer 

SHAP  Shapley Additive explanations 

V2X  Vehicle-to-Everything 
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2 Machine Learning Fundamentals 
This section provides a basic overview of ML concepts that will facilitate the understanding of its role 
in vehicle safety technologies. We explore the building blocks that constitute the ML systems, the 
relevant types of ML, and their relationship with other fields within AI. 

2.1 Definitions and General Understanding 
Defining ML can be challenging due to its evolving nature and the variety of perspectives within the 
field. In 1959, Arthur Samuel who popularized the term ML defined it to be a “field of study that gives 
computers the ability to learn without being explicitly programmed”1. A widely cited formal definition 
by Tom M. Mitchell (1997) states: 

"A computer program is said to learn from experience E with respect to some class of tasks T and 
performance measure P if its performance at tasks in T, as measured by P, improves with experience 
E." 

This definition encapsulates the core idea that ML systems use data (experience E) to improve their 
performance on specific tasks (T) over time, as evaluated by a performance measure (P). For 
example, suppose we feed an ML algorithm with a large amount of historical car accident data to 
enhance vehicle safety features. In this scenario: 

• T is the task of predicting and preventing car accidents. 

• E is the process of analysing extensive datasets of driving patterns and accident reports. 

• P is the accuracy with which the algorithm predicts potential safety hazards or collision risks. 

As the algorithm processes more data, its ability to predict and help prevent accidents improves, 
demonstrating the learning process. 

In practical use, ML can be viewed as a collection of algorithms and techniques that allow computers 
to learn from data and improve their performance on specific tasks without being explicitly pro-
grammed for those tasks. This latter is an important characteristic that contrasts with expert 
systems, as were widely used in early AI-driven car safety tools (discussed below). 

ML is both rooted in computer science and extensively builds upon established mathematical and 
statistical methodologies and theories. Additionally, disciplines such as biology, physics, and 
psychology have significantly contributed to the development of ML. 

However, ML is not just new ways of combining established knowledge. ML has introduced funda-
mentally new theories and algorithms that have advanced the field of AI. Notable examples include 
Neural Networks (NN) and Reinforcement Learning, both of which are particularly relevant in vehicle 
safety applications. These methods will be discussed below. 

 

1 Although it is not an original quote, it remains the most commonly used paraphrased version of Samuel's 
sentence: “Programming computers to learn from experience should eventually eliminate the need for much of 
this detailed programming effort”. Samuel, A. L. (1959). Some studies in machine learning using the game of 
checkers. IBM Journal of research and development, 3(3), 210-229.  
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2.2 Fundamental Building Blocks 
While multiple components are often required for the successful implementation of ML, three 
fundamental building blocks generally form its main theoretical and applied foundation. These core 
components are data, model, and optimization. Additional components include features and 
feature engineering, evaluation, and deployment. We briefly outline them below. 

Data is a key prerequisite for any ML process. It provides the information needed to identify 
patterns, train models, and make predictions. Data can be structured (e.g., numerical data in 
spreadsheets) or unstructured (e.g., text, image, audio). The effectiveness of an ML model strongly 
depends on the quality and relevance of the data, although some models can tolerate a certain level 
of imperfections. 

A model is a mathematical representation, often expressed as a function, that learns patterns and 
relationships present in data. This learning enables the model to make predictions, identify trends, or 
uncover hidden structures within the data. Models are built upon theoretical constructs derived from 
statistics and mathematics. 

In ML, selecting a model involves choosing the “best model” from a set of candidates, the model 
space. This space consists of different model types (e.g., linear, non-linear) and the model parame-
ters. However, the model space is not a fixed set of hypotheses; models learn and adapt through an 
optimization process (described below) by adjusting their parameters. The choice of model space 
depends on the problem type, the nature of the data, and the desired outcome. 

Features are quantifiable properties or characteristics of data that can be used to train a model. 
Feature engineering involves selecting relevant features, transforming raw data into suitable 
formats, and generating new features from original features to improve model performance. In car 
safety applications, features might include vehicle speed, distance to nearby objects, driver reaction 
times, road conditions and traffic density. Effective feature engineering can significantly enhance a 
model's effectiveness by focusing on factors that most directly impact safe driving. 

Optimization is the process of adjusting a model's parameters to achieve a desired objective, such as 
minimizing prediction error or maximizing the accuracy of traffic safety hazard detection. It plays a 
crucial role in the learning process by iteratively improving the model’s performance based on 
feedback from the data. In ML, optimization is often referred to as training the model. 

Evaluation assesses a model's performance to ensure it generalizes well to data beyond the training 
set. Best practices involve using multiple well-adapted performance metrics, such as accuracy, 
precision, recall, F1-score, and mean squared error, to provide a comprehensive and targeted 
assessment. In safety-critical systems like car safety, rigorous evaluation is especially vital. Poor 
model performance in such applications can lead to severe consequences, making thorough and 
careful evaluation an essential step in the development process. 

Deployment involves implementing a model in a real-world environment and ensuring its perfor-
mance remains effective over time. This process typically includes integrating the model into opera-
tional systems, such as vehicle safety systems or traffic management infrastructure, where the real-
time decision-making takes place. For example, in car safety applications, the model must process 
data quickly to perform tasks like activating emergency braking. Continuous monitoring is essential 
to track performance and detect potential issues, such as model drift, which is typically caused by 
changes in driving patterns or environmental conditions that reduce the model's accuracy. To 
address such challenges, models are often updated through regular retraining with new data, 
ensuring they maintain or improve their performance over time. 

Together these elements form the core framework for building and training ML systems. They can be 
summarized as follows: 
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• Data: the available information (e.g., vehicle sensor data, traffic information). 

• Features: the representation of the data (e.g., speed, distance to obstacles). 

• Model: The mathematical representation used to quantitatively capture patterns and 
structures within the data (e.g., regression models, clustering methods). 

• Optimization: the process of adjusting the model to best fit the data (e.g., training the model 
to minimize prediction errors). 

• Evaluation: the measurement of the model's performance (e.g., using accuracy metrics). 

• Deployment: the practical application of the model (e.g., integrating into vehicle safety 
systems). 

2.3 Algorithms 
An algorithm can be considered a step-by-step procedure, or a set of rules used to solve a problem or 
perform a task. In ML, an algorithm combines a model with an optimization method to learn the 
model’s parameters from data. Developing and improving algorithms is one of the most actively 
researched areas in the field of ML. 

For instance, a linear regression model specifies a linear relationship between input features and the 
output variable. The algorithm then applies optimization, such as ordinary least squares or gradient 
descent, to find the optimal coefficients (i.e., parameters in linear regression) that best fit this linear 
function to the given data. 

A core part of optimization is regularization, which involves applying constraints on the model's 
parameters to prevent overfitting, a situation where the model performs well on training data but 
poorly on new, unseen data. This is of great importance in car safety applications, where models 
must generalize well to ensure reliability in diverse driving conditions. 

2.4 Models 
ML models can be broadly divided into three main categories, often called learning paradigms or 
learning methods: supervised learning, unsupervised learning, and reinforcement learning, each 
tailored to different problem settings and data conditions.  

Supervised Learning include the models that are trained on labelled data, where each input is paired 
with a known output. The goal is to establish a mapping between input and output that enables the 
model to accurately predict output for new unseen input data. This paradigm is relevant in vehicle 
contexts such as detecting surrounding objects, classifying road structures, recognizing traffic signs, 
and forecasting traffic float. Classical supervised learning tasks include classification (e.g., distin-
guishing whether a detected object is a car or a bicycle) and regression (e.g., predicting stopping 
distances). 

A wide range of algorithms fall under the category of supervised learning. Among the most classical 
models are Linear and Logistic Regression. These are the basic models that, while less commonly 
used in vehicle safety today, serve as the foundation for more advanced models and can serve as an 
integral part of other models. Tree models as Decision Trees and Random Forests, where the latter 
is combination of multiple decision threes, handle complex, non-linear patterns, while Support 
Vector Machines find boundaries hyperplane between classes in high-dimensional spaces.  

A particularly important group of models in recent years is ensemble methods, which combine 
multiple models to enhance predictive performance and reduce variance. By leveraging diverse 
models, ensemble methods can capture a wider range of patterns in the data. Three widely used 
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ensemble techniques are bagging, stacking, and boosting, with boosting standing out as the most 
effective in many predictive tasks. It has won numerous ML competitions and has been extensively 
implemented in vehicle safety applications. 

Neural Networks (NNs) are probably the group of models that have gained most attention in recent 
years due to their ability to model highly complex relationships in data. They are fundamentally built 
upon successive layers, each composed of interconnected computational units. This multi-layered 
architecture enables the network to learn hierarchical representations, where each layer extracts 
different levels of abstract features from the input data, allowing it to capture intricate patterns and 
dependencies. Among the most successful NN architectures are Convolutional NN (CNNs) and 
Recurrent NN. CNNs excel at image-related tasks, such as object detection, lane detection, and 
interpreting camera footage in vehicle driving systems. Recurrent NNs, on the other hand, are 
specialized for modelling sequential data, such as sensor time-series or natural language. 

Recently, Transformer models have revolutionized ML, particularly in natural language processing. 
They have been highly successful in applications such as large language models, including ChatGPT, 
developed by OpenAI. The Transformer architecture was introduced in the seminal 2017 paper 
“Attention Is All You Need” (Vaswani et al., 2017). Unlike traditional sequential models, Transformers 
leverage self-attention mechanisms, allowing them to dynamically establish relationships between 
different parts of an input sequence, capturing long-range dependencies and global context. 
Although initially designed for natural language models, Transformers have also demonstrated 
significant performance in computer vision tasks. The introduction of Vision Transformers has 
enabled transformer-based models to replace Convolutional NN in several visual perception 
applications. Unlike Convolutional NNs, which process input data using a sliding filter over the 
image’s features, Vision Transformers treat images as sequences of patches, similar to how words 
are processed in language models. This patch-based approach allows transformers to model complex 
spatial relationships within an image more effectively. Moreover, Vision Transformers are particu-
larly effective in integrating both spatial and temporal data, making them highly valuable for real-
time 3D scene reconstruction in vehicle perception systems. Their ability to segment the vehicle’s 
surroundings into distinct objects and characteristics enhances object recognition, semantic segmen-
tation, and scene understanding. This capability is crucial for autonomous driving and vehicle safety 
systems, where accurate environmental perception is essential for collision avoidance, lane 
detection, and navigation in dynamic traffic conditions. 

Unsupervised learning, unlike supervised learning, does not rely on labeled outputs, allowing models 
to freely discover hidden structures, patterns, and relationships within the data. This approach is 
particularly useful for exploratory analysis, such as clustering driving styles to detect risky behavior, 
identifying unusual sensor readings, or recognizing atypical vehicle behaviors that may indicate 
mechanical issues.  

Clustering algorithms like K-Means and Hierarchical Clustering, partition data into meaningful 
groups, helping to reveal complex patterns that can later be labeled for further analysis. Dimension-
ality reduction techniques, such as Principal Component Analysis, streamline large datasets into 
more manageable forms while preserving essential information, enabling faster and more efficient 
model training. Additionally, Autoencoders, a class of neural networks specialized for unsupervised 
tasks, are particularly effective for detecting anomalies by identifying deviations from normal 
patterns, making them valuable for early fault detection in vehicle sensors and predictive mainte-
nance. They can also compress high-dimensional data into a compact representation, reducing 
storage and transmission costs while retaining key information for decision-making. 

Reinforcement Learning differs from supervised and unsupervised learning by focusing on learning 
through interaction and sequential decision-making rather than from labelled data or static pattern 
discovery. In Reinforcement Learning, an agent interacts with an environment by taking actions and 
receiving rewards or penalties as feedback from the environment. The goal is to develop an optimal 
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policy, i.e., a strategy that maximizes cumulative long-term rewards through trial and error. Rein-
forcement Learning is inherently dynamic, as learning continuously adapts based on new interactions 
and environmental feedback. 

Two prominent approaches in RL are value-based and policy-based methods. Value-based methods, 
such as Q-learning, are effective for discrete decision-making, like determining whether to brake or 
accelerate. Policy-based methods, on the other hand, are particularly suited for continuous control 
tasks, such as smoothly adjusting a vehicle’s steering angle, enabling them to handle dynamic driving 
conditions more effectively.  

In vehicle applications, Reinforcement Learning is particularly useful for tasks such as lane merging, 
intersection negotiation, adaptive distance control, and collision avoidance manoeuvres. These 
behaviours are typically learned through extensive training in simulated environments before being 
deployed in real-world scenarios to ensure safety and efficiency. 

Together, these three learning paradigms provide a powerful framework for advancing vehicle 
safety. By using supervised models for prediction, unsupervised techniques for anomaly detection, 
and reinforcement learning for adaptive decision-making, intelligent vehicle systems can be devel-
oped to enhance safety across diverse driving conditions. 

2.5 Explainability 
ML models, particularly those with a large number of parameters, often function as “black boxes”, 
where the internal decision-making processes remain opaque. This lack of transparency can intro-
duce biases, erode trust, and complicate regulatory compliance, especially in safety-critical applica-
tions. Explainable AI (called XAI) has emerged to address these challenges by providing insights into 
how ML models generate predictions. 

Explainability is essential for evaluating model performance, ensuring fairness, and fostering 
transparency in ML-driven decision-making. Understanding the rationale behind each decision builds 
trust between users and developers while promoting ethical AI. 

Various techniques enhance explainability. Feature attribution methods like Local Interpretable 
Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) identify key input 
features that influence a model’s output. Model simplification techniques approximate complex 
models with interpretable alternatives, while visualization tools (e.g., heatmaps, feature importance 
plots, and saliency maps) provide intuitive insights into model behaviour. 

Ensuring explainability in ML-driven safety applications presents unique challenges due to the trade-
off between accuracy and transparency. In domains such as autonomous driving and predictive 
safety, regulatory compliance necessitates interpretable AI. As XAI evolves, it will be pivotal in 
bridging the gap between high-performance ML models and the need for interpretability, fairness, 
and trust in AI-driven vehicle safety systems. 

2.6 Machine Learning in comparison to Statistics and 
Expert Systems 

AI includes a wide range of methodologies, with ML, statistics, and expert systems each playing 
significant roles, both independently and in combination. The landscape of AI has evolved substan-
tially over time, with the prominence of different approaches shifting as technology and resources 
advanced. Today, ML, especially those leveraging large datasets and advanced computational power, 
dominate much of what is considered “cutting-edge AI.” This does not mean that statistics and 
expert systems have disappeared; rather, their roles have become more specialized, and their 
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influence on mainstream AI is less direct. Understanding the distinctions and areas of overlap among 
these fields provides a deeper and more comprehensive understanding of AI; both in its historical 
development and in its modern applications. 

ML and statistics share a common mathematical foundation but differ in goals and applications. 
Statistics primarily focuses on understanding relationships between variables, estimating parame-
ters, and quantifying uncertainty. It emphasizes interpretability, inference, and hypothesis testing, 
making it central to fields like social sciences, medicine, and econometrics. In contrast, ML prioritizes 
prediction and automation, using data-driven models to generalize to unseen data. It excels at 
handling large-scale, high-dimensional datasets and uncovering complex, nonlinear patterns that 
traditional statistical models may struggle with. ML often prioritize empirical performance over 
theoretical guarantees, trading interpretability for flexibility and scalability. 

While statistics relies on carefully specified models with a small number of predictors, such as using a 
linear regression to compare medical treatments, ML may use high-dimensional inputs like genomic 
data and patient histories to predict outcomes without requiring explicit relationships between vari-
ables. Additionally, ML leverages high-performance computing to process massive datasets efficient-
ly, whereas traditional statistics is more often associated with moderate-sized, well-curated data and 
structured theoretical modelling. 

Both disciplines are evolving, with ML increasingly incorporating statistical inference and statistics 
adopting computational advancements. Understanding their strengths allows researchers to apply 
the most suitable approach for different analytical challenges. 

Expert systems are rule-based AI models that rely on predefined logical rules to make decisions, 
whereas ML derives patterns from data without explicit programming. While expert systems perform 
well in stable, well-defined domains, they struggle with complexity and variability. In contrast, ML 
thrives in dynamic environments, making it particularly valuable for vehicle safety applications and 
other data-rich fields. 

Expert systems, which gained prominence in the 1980s and early 1990s, encode human expertise 
into "if-then" rules or logical inference engines. They are highly interpretable but require manual 
updates to accommodate new conditions, making them labour-intensive and difficult to scale. In 
contrast, ML automates pattern discovery, allowing models to continuously adapt and improve as 
new data emerges, like evolving traffic patterns, new types of road hazards, or shifts in consumer 
behaviour. 

For instance, in vehicle safety applications, modern cars generate vast amounts of sensor data (e.g., 
LiDAR, cameras, and sensors). Developing an expert system to handle every possible driving condi-
tion would require an immense and impractical rule set. ML models, however, can process these 
high-dimensional inputs autonomously, identifying subtle cues, such as slight changes in lighting or 
vehicle motion that might be impossible to manually encode. 

Despite their differences, ML, expert systems, and statistical methods are complementary. Statistical 
learning theory underpins many ML algorithms, while hybrid AI approaches integrate rule-based 
reasoning with ML techniques; for example, combining knowledge graphs with NN models. These 
hybrid systems leverage the strengths of both paradigms, leading to more robust, scalable, and 
interpretable AI solutions. 
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3 Data Sources 
In the context of this report, data relevant to vehicle safety serves multiple purposes, including the 
development of ML models, continuous monitoring, and optimization of these models during vehicle 
operation. Additionally, data plays a crucial role in real-time decision-making while the vehicle 
operates in traffic. The initial phase of model development often involves exploratory data analysis, 
which leads to the selection of useful data, followed by processing and integration of the data into 
operational ML models within the vehicle's safety program. In this section, we describe how data is 
collected by the vehicle’s onboard systems and received from external sources. These external 
sources may include infrastructure elements, such as traffic management systems, and environ-
mental factors, such as weather data. 

3.1 In-Vehicle Data Acquisition 
Modern vehicles are equipped with numerous sensors and generate vast amounts of data. While the 
application of ML will primarily occur in-car or on the edge, the development of new ML models 
generally takes place off-site at the vehicle’s original equipment manufacturer (OEM), or their 
suppliers. While our focus here is on safety-related sensors, many other sensors are also employed to 
control systems, such as combustion and exhaust management in internal combustion engine 
vehicles or battery management in electric vehicles. 

In the following, we provide a brief overview of typical sensors present in modern vehicles that have 
the potential to deliver data for ML applications. Most of the information on the sensors mentioned 
in this section is sourced from the Bosch Automotive Handbook (Bosch, 2018). 

Electronic Stability Control (ESC) is a collection of functions designed to ensure stable driving within 
physical limits, such as keeping the vehicle on the path determined by the steering angle. While ESC 
is not strictly a data source, it is a system that processes inputs and adjusts braking and steering as 
needed. 

Traction Control System reduces excess wheel spin during acceleration. Data from this system can 
potentially provide information about the current friction experienced between the tires and the 
road surface. 

The steering angle sensor and throttle position sensor measure the requested steering input and 
torque, respectively. Together with yaw rate and lateral acceleration measurements, these sensors 
provide essential inputs to the ESC system. 

An accelerometer (e.g., arrays of single sensors like Bosch’s SMI860) measures lateral acceleration, 
yaw rate, and roll rate. These measurements are crucial for the stability system, allowing it to 
compare the expected (calculated or modelled) path with actual measurements. The expected path 
is calculated from prior inputs and compared to the new path based on updated inputs. A mismatch 
exceeding certain thresholds triggers the electronic control unit to counteract the unexpected 
behaviour and stabilize the vehicle. 

Ultrasonic sensors, radar, and LiDAR use echo-based technology to gather information about the 
vehicle's surroundings across various distance ranges. Ultrasonic sensors are primarily used in 
parking applications (typically 0.3–2 m), while radar and LiDAR detect obstacles at greater distances 
(up to 150 m). Radar-based systems use electromagnetic waves in the radio spectrum, while LiDAR 
uses shorter wavelengths, typically below the visible light spectrum. LiDAR offers the longest ranges 
but is more susceptible to adverse weather conditions, such as heavy rain or snow. Radar and LiDAR 
are utilized for longer distances, primarily in adaptive cruise control applications. Radar can also be 
employed for emergency braking. 
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Cameras are used to generate computer vision (images and video). They play a key role in lane-
keeping assistance and monitoring other road users (e.g., detecting crossing traffic in front of or 
behind the vehicle and providing lane shift warnings for approaching vehicles). Camera-based 
systems are crucial for object detection, segmentation, and other visual analyses.  

Each wheel is equipped with a wheel speed sensor. In vehicles with anti-lock braking system (ABS) 
and ESC, these sensors provide critical inputs to the ESC system, enabling control of each wheel 
independently. This functionality helps correct understeering or oversteering, particularly in curves. 

The tachometer measures the vehicle's overall speed, while Global Navigation Satellite Systems 
(GNSS) sensors provide the vehicle's global position. 

Additional sensors include rain sensors (primarily controlling windshield wipers but also potentially 
warning of reduced road friction), external temperature sensors, and driver awareness sensors 
(e.g., steering input and eye monitoring). 

As ML and sensor technologies evolve, the integration of these systems with cloud services and 
smart infrastructure will continue to advance vehicle safety and efficiency. Nowadays, modern 
vehicles are already connected to OEM cloud services enabling vast amounts of data to be collected. 
For instance, Tesla is known to collect data from cameras and other sensors in their vehicles to be 
used in development of their self-driving program (Harris, 2022). By the end of 2024, with approxi-
mately seven million Tesla cars on the road, one can expect extensive coverage of standard driving 
situations captured by these vehicles. Particularly for heavy goods vehicles, as well as fleets of 
personal cars (e.g., for home care services), a variety of data types (e.g., GNSS, vehicle speed, load 
information) can also be collected and stored in cloud services. This data is typically used for logistics 
purposes, such as route optimization, delivery tracking, fleet performance monitoring, and ensuring 
timely maintenance. 

Within the vehicle, all data communication occurs in accordance with the Controller Area Network 
(CAN) bus protocol The encoding of these messages is often proprietary to the OEM. However, 
certain information, such as vehicle speed and specific sensor statuses, is regulated by the OBD-II 
protocol, which mandates data sharing by law ("SAE J2012 Diagnostic Trouble Code Definitions," 
2016). 

However, data collection via CAN and OBD for ML purposes is not fully scalable to the volume of data 
required for effective model development. To address this limitation, various data generation tech-
niques are employed, including data augmentation, simulation, and synthetic data generation. Data 
augmentation enhances existing data by applying transformations such as rotations, scaling, or noise 
injection. Simulation involves modelling real-world conditions to create new data that closely 
resembles actual driving scenarios, leading to synthetic datasets. Additionally, synthetic data can be 
generated through numerous other approaches, such as generative ML models, which learn patterns 
from real data and create entirely new samples. 

3.2 Vehicle-to-Everything Communication 
Nowadays, an increasing number of devices are interconnected through a combination of local 
networks, direct device-to-device communication and cloud services, enabling vast data exchange. 
This trend extends to the automobile industry, where technologies like radio signals and satellite 
navigation are already well-established. Newer technologies enabling two-way communication are 
also emerging. One such innovation is Vehicle-to-Everything (V2X) communication, a concept that 
has gained significant traction as technological advancements accelerate. 

The core idea behind V2X is the exchange of information between vehicles, infrastructure, and other 
traffic participants, enabling intelligent decision-making through cloud services (Lv et al., 2024). V2X 
encompasses subcategories such as Vehicle-to-Vehicle, Vehicle-to-Infrastructure, and Vehicle-to-
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Pedestrian communication. These systems establish multi-layered data pipelines that enhance 
vehicles' environmental awareness and decision-making capabilities. 

Many vehicles are already equipped with ADAS, which use multiple sensors to assist drivers with the 
safe operation of a vehicle. V2X aims to augment existing ADAS solutions with over-the-air messages 
as additional input data. ML systems can process this data to provide a more comprehensive under-
standing of a vehicle's surroundings, improving traffic safety by enabling adaptive route planning, 
cooperative manoeuvring, and real-time hazard alerts. For example, Audi’s Traffic Light Information 
system integrates ML with V2X technology to connect vehicles with traffic signal infrastructure (Glon, 
2020). This system provides drivers with real-time traffic information, enabling adaptive route 
planning, issuing real-time hazard alerts, and facilitating smoother, safer, and more efficient traffic 
flow. 

While ADAS sensors are highly advanced, they have limitation in detecting hazards hidden behind 
obstacles or beyond their range. V2X communication addresses this limitation by providing real-time 
data from connected vehicles and infrastructure, including sudden braking events, reported obsta-
cles, adverse weather conditions, and hazards beyond the driver’s line of sight. For example, automo-
tive manufacturers like Volkswagen have implemented V2X technology, which enables direct com-
munication between vehicles of the same brand. This allows for early warnings about hazards—such 
as stalled vehicles or slippery road segments—to be transmitted through the network before the 
driver’s sensors detect them (Technical milestone in road safety: experts praise Volkswagen’s Car2X 
technology, 2020). Fixed hazards, like road construction zones or railroad crossings, could also be 
equipped with transmitters to prevent accidents caused by poor visibility (e.g., fog) or obstructions. 

Beyond safety, V2X technology also enhances driver comfort and convenience. It provides informa-
tion about available parking spaces, optimal routes, and real-time traffic updates. Economically, V2X-
enabled ML systems interact with urban objects like traffic lights and roadside sensors, relaying this 
information to satellite navigation systems to avoid congested areas. These predictive systems 
optimize signal timings, reduce traffic jams, and facilitate smoother traffic flows, especially in 
pedestrian-heavy or air-quality-challenged areas.  

V2X introduces unprecedented capabilities to the automotive industry, however, several challenges 
remain. V2X relies on mesh infrastructure, requiring extensive coverage and maintenance, as well as 
costly transmitters capable of supporting the system. Additionally, V2X-based ML applications face 
issues such as cybersecurity vulnerabilities, interoperability standards, and the need for scalable, 
low-latency communication protocols (Kim et al., 2021). Since no universal standard for V2X techno-
logy currently exists, designers must address the complexity of creating a safe communication 
system that performs reliably in high-noise traffic environments. Integrating diverse data sources 
into a unified system is also a significant challenge, as it demands substantial research, infrastructure, 
and the safeguarding of sensitive data (Luo, 2020). 

As V2X technologies mature and become more widely adopted, their integration with ML models 
heralds a new era of intelligent, cooperative transportation. By sharing insights to anticipate and 
mitigate hazards, V2X-driven ML applications promise a safer, more resilient, and efficient traffic 
ecosystem. 
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4 Machine Learning Application and 
Integration in Vehicle Safety 

ML has transformed vehicle safety by utilizing vast amounts of data from vehicle sensors, environ-
mental conditions, and road infrastructure. ML plays a role in post-accident analysis, real-time inter-
vention through adaptive traffic management, and risk mitigation during driving. These applications 
contribute to safer vehicle design, inform traffic safety regulations, and enhance systems for accident 
prevention and traffic management. Given the breadth of this field, this section highlights the most 
prevalent methods rather than providing an exhaustive review. 

4.1 Proactive Accident Predictions and Adaptive Traffic 
Management 

Proactive accident prevention relies on the ability to predict and identify explanatory variables, 
patterns and trends associated with an increased likelihood of accidents. By identifying key contribu-
tors to crash probability in post-accident data, such as specific roadway designs, adverse weather 
conditions, or fluctuating traffic volumes, these models can inform the development of targeted 
interventions and preventative strategies to effectively mitigate accident risks. Furthermore, as 
transportation networks become more complex and demands on road infrastructure increase, static, 
one-size-fits-all solutions are often insufficient for maintaining safe and efficient traffic flows. When 
integrated with real-time environmental monitoring and connected infrastructures, ML enables 
adaptive traffic management systems that dynamically respond to changing conditions such as 
weather, lighting, traffic density, and road quality. Such data-driven dynamic interventions can 
significantly enhance both traffic safety and mobility. 

ML models excel in analysing complex spatiotemporal patterns derived from data sources such as 
combinations of historical crash records, road infrastructure characteristics, and environmental 
factor. Recent studies have demonstrated the effectiveness of a variety of ML algorithms, from 
traditional statistical models to advanced NN architectures, in improving accuracy in accident 
prediction (Ali et al., 2024; Chai et al., 2024). For example, Iranmanesh et al. (2022) identified high 
crash risk segments in roads using the ensemble models random forest and boosting. The results 
indicated that boosting is better for identifying crash frequency factors, while random forest exceled 
at detecting trends and forecasting, with traffic flow rate, road type, and wind speed identified as key 
influencing variables. A recent review by He et al. (2024) further emphasised the strengths of the 
recurrent NNs in traffic prediction, showing their effectiveness in capturing temporal dependencies 
and spatiotemporal patterns in traffic data. Furthermore, date from geographic information system 
(GIS) in combined with other data types have in ML approaches demonstrated effectiveness in 
identifying crash hotspots, and in analysing the influence of road attributes such as intersections, 
speed limits, and curvature on accident likelihood (Ang et al., 2022).  

Another upcoming use of ML is monitoring and maintaining the integrity of the road infrastructure 
itself. ML-based anomaly detection can identify deteriorating pavement conditions, malfunctioning 
traffic lights, or sensor faults that degrade system performance (Rathee et al., 2023). By proactively 
initiating maintenance these systems preserve safety and reduce the long-term strain on critical 
infrastructure. For example, the Norwegian road authority utilized image-based ML for guardrail 
inspections, significantly reducing the time required compared to previously used manual methods 
(Digital Inspection of National and European Roads for the Norwegian Public Roads Administration, 
2025). Additionally, this approach makes the control job a substantially safer operation (iSi inSight – 
digital road safety). 
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Furthermore, environmental factors, such as weather and lighting conditions, are crucial in improving 
the accuracy of crash risk predictions. Theofilatos et al. (2019) compared traditional ML methods, 
such as random forests and decision trees, with NN for real-time crash prediction. Their analysis 
revealed that variables like rainfall and speed variance significantly influence crash likelihood, with 
NN achieving a more robust and balanced performance. These findings emphasise the importance of 
integrating real-time environmental data into proactive safety management strategies. 
The incorporation of dynamic, real-time adaptation in traffic management is a field with the potential 
to revolutionize traffic safety. By integrating large and heterogeneous data streams, ML models can 
leverage these inputs to forecast near-term traffic conditions, enabling adaptive traffic management 
systems. For instance, during a sudden downpour that reduces visibility and roadway grip, ML-driven 
controllers can dynamically adjust speed limits, issue timely public safety warnings, or in the case of 
changes in road infrastructure, they can divert specific vehicle classes to safer, better-lit corridors or 
redistribute traffic to less affected routes (Hariharan et al., 2024; Vivekanandan et al., 2024). For 
example, reinforcement learning is used to optimize adaptive traffic signal control and to provide 
real-time route recommendations to improve traffic management (Agrahari et al., 2024; Gowri et al., 
2024).  

In the future, as connected and autonomous vehicles become more prevalent, adaptive traffic 
management systems may coordinate platoons of driverless cars and dynamically reroute vehicles in 
response to minor shifts in traffic conditions and safety status. By continuously refining their 
responses to data sampling, ML-driven systems will become smarter, providing safer and more 
sustainable mobility. An important and emerging research field is the domain adaptation of ML 
models, which enables the transfer of knowledge across diverse regions and climates. This advance-
ment addresses the challenge of adapting ML-based traffic management systems to varying 
environmental and contextual conditions, enhancing their potential in road safety. 

4.2 Advanced Driver Assistance Systems 
ADAS are technologies which enhance vehicular safety and driving comfort by supporting the human 
driver in real-time. These technologies include collision warning, collision intervention, driving 
control assistance, parking assistance, and other driver assistance systems. For example, adaptive 
cruise control is one of the most popular and relevant applications of ADAS that can benefit from ML 
(Selvaraj et al., 2023). Further, the systems encompass a variety of functionalities, such as detecting 
and classifying surrounding objects, maintaining the vehicle’s lane position, and initiating emergency 
braking manoeuvres, each of which relies on robust perception and decision-making algorithms 
trained on diverse sensor inputs. ML is emerging as the preferred approach for enabling these 
functionalities (Ball & Tang, 2019). 

CNNs have been pivotal in advancing object detection capabilities in ADAS (Wei et al., 2019). This 
network type excels in object detection with large scale variation between objects. They enable the 
integration of contextual information and detailed features, resulting in more accurate detection of 
objects at various scales, which is necessary for real-time ADAS applications. Pan et al. (2021) devel-
oped lightweight CNNs for each of the in-vehicle sensors and then fused these networks using a 
boosting based strategy. The system leverages redundancies across multiple sensors to provide 
accurate and reliable object detection. This method not only improves real-time object detection but 
also maintains high performance even when sensors are partially degraded. By reducing the impact 
of faulty data and making better use of available sensor inputs, it enhances the safety and reliability 
during highly diverse driving conditions. Lately, research has explored the application of the trans-
former NNs (known for their enormous success in large language models) in vehicle image classifica-
tion within ADAS (Taki & Zemmouri, 2023). By leveraging the self-attention mechanisms inherent in 
transformers, they have demonstrated competitive performance compared to traditional CNN. 
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Furthermore, a study applied transformers to particularly  difficult vehicle classification problems, 
revealing an effectiveness in processing low-resolution vehicle images (Dong et al., 2024). 

Maintaining correct lane position is crucial for preventing sideswipe collisions and roadway depar-
tures. ML-driven lane detection systems often use NNs to conduct a so-called image segmentation. 
Image segmentation is the process of dividing an image into multiple parts or regions that belong to 
distinct class categories. This is used to identify lane markings and estimate roadway curvature. For 
example, Li et al. (2021) developed a lane detection method using CNN, demonstrating robust 
performance under challenging conditions such as fuzzy or missing lane markings. Furthermore, 
Mamun et al. (2022) reviewed a set of NN-based frameworks for lane detection, emphasizing the 
efficacy of CNNs in achieving precise lane detection for ADAS. 

When an imminent collision is detected, ML-based ADAS can automatically intervene by e.g. applying 
emergency braking to mitigate impact severity or prevent crashes entirely. These systems combine 
predictive modelling with situational awareness, factoring in elements such as object trajectories, 
relative speeds, and road friction to make informed decisions in real-time. For instance, Itu and 
Danescu (2023) employed CNNs to predict vehicle velocity and emergency braking events by 
analysing sequential image data, enabling timely braking responses.  

Reinforcement learning has also shown promise, particularly when combined with other ML models. 
Li et al. (2018) proposed a system in which an NN was used to predict driving track features, while 
reinforcement learning utilized these features to make steering decisions for the vehicles. The 
system outperformed the traditional controllers Linear Quadratic Regulators and model predictive 
control. Additionally, Zhang et al. (2023) introduced a framework combining recurrent NN and 
reinforcement learning for adaptive control, enabling vehicles to maintain lane position under 
varying conditions. Furthermore, reinforcement learning have been applied to develop advanced 
longitudinal control and collision avoidance strategies in high-risk driving scenarios. Chen et al. 
(2024) demonstrated how these algorithms effectively manage the complexities of ADAS, enhancing 
the system's ability to navigate hazardous conditions and ensure timely braking. 

These studies demonstrated how ML approaches can lead to smoother and more efficient ADAS 
performance compared to traditional rule-based methods, thereby enhancing overall driving safety. 

4.3 Driver Behaviour and Fatigue Monitoring 
Monitoring driver attentiveness and detecting signs of fatigue or distraction is increasingly recog-
nized as crucial for accident prevention. According to European Commission (2016) about 95% of 
road accidents are due to some level of human error, and around 75% are detected to be due to 
human error alone. In response to regulatory measures, such as the European Union’s mandate on 
driver monitoring systems for newly produced vehicles (European Commission, 2021a), ML 
algorithms have become indispensable tools in assessing driver states and delivering timely alerts. 

Monitoring driver behaviour and detecting fatigue are critical components of ADAS, aiming to 
enhance road safety by identifying and mitigating risks associated with driver inattention or 
drowsiness. NN have been applied to develop systems capable of real-time monitoring and analysis 
of driver states which in facilitates real-time analysis and response, contributing to the development 
of proactive in-car alarm systems (Reddy et al., 2023). These systems analyse drivers' physiological 
and behavioural data, activating alerts when necessary to prevent accidents caused by fatigue or 
distraction. Furthermore, smartphone-based sensing combined with ML has been explored for driver 
behaviour classification, providing a cost-effective and accessible means to monitor and improve 
driving safety (Brahim et al., 2022). 

When driver monitoring systems detect signs of fatigue or distraction, they can initiate real-time 
warnings and interventions to enhance safety. These measures include auditory alerts, haptic 
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feedback like steering wheel vibrations, and visual warnings on the dashboard. In Volvo's driver 
monitoring system in the EX90 model utilizes cameras to assess driver attentiveness and can 
autonomously stop the car if impairment is detected (Stokel-Walker, 2024). 

Additionally, NN models have been developed for driver behaviour detection, offering robust and 
accurate predictions that enable timely responses to various driving conditions. For instance, Gheni 
and Abdul-Rahaim (2024) proposed a model that uses data from in-vehicle sensors. This system 
captures key driving signals such as acceleration, speed, and throttle position to identify patterns of 
safe and unsafe behaviour. The model employs a hybrid learning architecture that combines CNNs 
and recurrent NNs, leveraging the strengths of both models. By analysing real-time data, the 
approach achieved improved accuracy while maintaining low computational complexity. This innova-
tive method addresses limitations of previous vision-based systems by relying on reliable, privacy-
preserving sensor data. ML algorithms are also used to analyse data from in-vehicle cameras, 
smartphones, and physiological sensors, to classify and predict driver behaviours. By training models 
on extensive repositories of sensor and vehicle data, these approaches can identify patterns that 
human analysts might overlook (Abosaq et al., 2022). Further, Divyasri et al. (2024) evaluated a range 
of boosting algorithms on data collected from in-vehicle sensors to identify driving behaviours as a 
contributor to road accidents. Sensor features such as engine speed, torque, throttle position, 
vehicle speed, and steering wheel angle were analysed. The algorithm Light Gradient-Boosting 
Machine emerged as the most accurate model, achieving an accuracy of 99.68% when classifying 
between safe and unsafe driving behaviours. By analysing vast datasets from real-world driving 
scenarios, this research highlights ML’s ability to detect subtle patterns in vehicle dynamics, such as 
unexpected changes in throttle position or steering wheel inputs, that reflect unsafe behaviour. 

Another significant contributor to traffic accidents is a driver fatigue, as it reduces cognitive perfor-
mance and increases the risk of collisions. Recent advancements in ML have enabled the develop-
ment of effective, real-time fatigue detection systems. These systems rely on visual and physiological 
indicators to monitor drivers’ states and issue timely warnings. One approach leverages the most 
sophisticated CNNs to analyse video data from in-vehicle cameras. Facial features, such as yawning 
and eye closure, are monitored to identify signs of fatigue. For example, Makhmudov et al. (2024) 
developed a system that uses a set of classifiers to extract facial regions and advanced image 
processing algorithms for fatigue detection. Their model achieved an accuracy of 96.54% in 
identifying drowsiness under varying lighting conditions and facial angles, demonstrating the 
effectiveness of CNN-based architectures in improving road safety. Wu (2024) presented a vision-
based system using facial alignment that identifies distracted and fatigued behaviours using CNNs to 
measure eye and mouth movements. In addition to visual methods, physiological signals, such as 
brain activity, are being explored to enhance fatigue detection. For example, systems utilizing 
electroencephalogram (EEG) data have been developed to detect driver fatigue. EEG measures 
electrical activity in the brain and can provide direct insights into a driver's cognitive state. However, 
traditional EEG setups are often impractical for everyday vehicle use due to their complexity and 
intrusiveness. Recent advancements have led to the development of more user-friendly, wearable 
EEG devices designed for real-world applications, including driver monitoring (Casson, 2019). 

These techniques underline the importance of ML in creating reliable driver monitoring systems, 
emphasizing their potential to reduce accidents caused by drowsy or distracted driving. As 
technology evolves, incorporating additional behavioural and physiological data could further 
improve the accuracy and robustness of fatigue detection systems. The application of ML in 
monitoring driver behaviour and detecting fatigue plays a pivotal role in enhancing road safety.  
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4.4 Personalized Safety Recommendations 
ML enables the development of personalized safety recommendations tailored to individual driving 
behaviours and risk profiles. By analysing patterns in a driver’s historical performance, including trip 
data, vehicle telemetry, and reaction times, ML models can identify specific risk factors, such as 
habitual speeding, abrupt braking, or sharp cornering, and provide targeted feedback to mitigate 
these risks (Gheni & Abdul-Rahaim, 2024). Personalized recommendations mark a shift from generic 
safety measures to individualized, data-driven interventions that address unique driver behaviours. 

ML models extract features from trajectories, acceleration and braking patterns, steering inputs, and 
throttle position, to profile drivers based on their behaviour. ML methods, such as clustering and 
collaborative filtering, are used to group drivers with similar risk profiles and detect outliers who may 
require tailored interventions. For example, Ferreira et al. (2017) demonstrated the use of smart-
phone sensor data to detect risky behaviours like excessive speeding and harsh braking. These 
insights enable the detection of patterns that generic road safety campaigns might overlook, allowing 
for more focused and actionable recommendations. Furthermore, clustering (K-mean) algorithms 
have been utilized to group drivers with similar risk patterns and to pinpoint drivers who may require 
targeted feedback (Chen et al., 2023).  

Once a driver’s risk profile is established, adaptive recommender systems generate personalized 
suggestions, such as optimal speed ranges or adjusted following distances. These recommendations 
can be delivered through in-car systems, mobile apps, or telematics dashboards. For instance, Zhou 
et al. (2025) highlighted how integrating real-time contextual data, such as traffic density and 
weather conditions, into recommender systems ensures that advice remains relevant and dynamic. 
This approach can warn drivers prone to late braking when approaching known congestion zones or 
high-risk intersections. 

The effectiveness of personalized safety recommendations depends on user engagement and trust. 
Research shows that drivers are more likely to adopt suggested behavioural changes when the 
feedback is presented clearly and incrementally. Gamification strategies, such as rewarding safer 
driving habits, have proven effective in increasing adherence to recommendations (Sumner et al., 
2024). Human-in-the-loop approaches, where drivers provide feedback on the system’s recommen-
dations, further enhance trust and improve long-term behavioural modification (Zhao et al., 2023). 

4.5 Automatic Control of Vehicle Status 
Ensuring vehicle reliability is crucial for road safety, as mechanical failures significantly contribute to 
traffic accidents. Advances in ML have facilitated the development of systems for automatic vehicle 
status monitoring, enabling proactive detection of maintenance needs and prevention of equipment-
related failures.  

ML-based predictive maintenance models, such as those using random forests, boosting, or NNs, 
have been shown to detect deviations from normal operating patterns in vehicles (Prytz, 2014; Zhu 
et al., 2020). For instance, a study on tire condition utilizing NN to analyse vibration signals obtained 
through tire rotation under various inflation pressures (Vasan et al., 2023). This approach enabled 
the instantaneous detection of tire anomalies, facilitating timely maintenance interventions. 

Furthermore, the Norwegian company Roadguard, in collaboration with the Norwegian public roads 
administration, has implemented a ML based system that assesses the condition of tires on passing 
vehicles. This system employs scanners placed on the road to measure the tread depth of each tire, 
identifying vehicles with inadequate tires (Elshani, 2024). 
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4.6 Autonomous Vehicle Safety 
The development of fully autonomous vehicles represents a significant shift in traffic safety, evolving 
from driver-assistance systems to vehicles capable of independently perceiving, deciding, and acting, 
eliminating the need for human intervention. Central to this advancement is the application of ML, 
particularly transformer-based models, which have demonstrated exceptional capabilities in 
supporting autonomous driving systems (Lai-Dang, 2024).  

One notable example is the framework introduced by Li et al. (2022), which utilizes transformers to 
merge spatial and temporal information from multiple cameras. This approach enables the conver-
sion of input data into a comprehensive 3D understanding of the vehicle's surroundings, known as 
“Bird’s Eye View”-perception using a system called BEVFormer. Additionally, this system accurately 
detects objects and creates segmented maps, even under challenging conditions like low visibility, 
achieving performance comparable to LiDAR-based systems. 

Beyond perception, autonomous driving systems rely on prediction to plan routes, execute lane 
changes, and execute safe manoeuvres. Reinforcement learning plays a pivotal role in this process, 
offering the capability to adaptively optimize driving strategies (Booher et al., 2024). In general, the 
complexity of fully autonomous driving is profound, requiring the vehicle to balance safety, effi-
ciency, and passenger comfort while adapting to dynamic conditions. ML models are expected to 
play a critical role in managing both reactive and proactive safety measures (Zhu et al., 2020). 

While ML-based technology used in human-driven vehicles is also central to safety in autonomous 
driving, the autonomous context introduces additional layers of complexity and responsibility. 
Autonomous systems must operate without human intervention, requiring more sophisticated 
models that can anticipate and respond to a wider range of scenarios.  

As of 2024, the industry has made notable progress toward higher levels of vehicle autonomy. For 
instance, Rivian plans to introduce advanced hands-free driver assistance systems in 2025 and “eyes-
off” systems in 2026 to enhance driver convenience and safety (Glovac, 2025). Similarly, Mercedes-
Benz's Level 3 “Drive Pilot” allows for hands-free driving under specific conditions but still requires 
human oversight (DRIVE PILOT Automated Driving | Mercedes-Benz USA; Roy & Bajwa, 2025). 

However, fully autonomous vehicles (Level 5 autonomy), capable of operating independently under 
all conditions, are not yet commercially available. 
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5 Transparency and Ethical Considerations 
in Machine Learning Safety Tools 

Given that road traffic accidents remain one of the leading causes of deaths (World Health 
Organization, 2019), developing safety tools to mitigate or eliminate these risks has significant 
societal benefits. However, like any technological advancement, these developments raise important 
discussions around ethical considerations, transparency, and their broader societal impacts. These 
concerns affect all stakeholders and stages—from decision-making and implementation to real-world 
applications and ensuring ethical and legal compliance. 

Technologies that rely on ML for decision-making introduce additional challenges and questions: 
How much trust should we place in these decisions? Are they aligned with our values and societal 
norms? To what extent should we rely on or override them? Since ML systems are fundamentally 
data-driven, questions also arise about the origin, balance, and reliability of this data, as well as 
whether it adequately represents diverse and real-world scenarios (Federal Trade Commission, 
2019). 

In this section, we will explore key aspects of transparency, regulatory compliance, and ethical, legal, 
and privacy considerations related to the use of ML safety tools within the automotive sector. This 
examination aims to highlight how responsible AI deployment can enhance safety while addressing 
societal concerns and regulatory demands. 

5.1 Ethical, Legal, and Privacy Considerations 
Ethical concerns are becoming more important as ML models are used in safety-sensitive areas. This 
is especially true in the automotive industry, where automated decisions can affect public safety. 
These decisions also influence consumer trust and the reputations of manufacturers and service 
providers. Ensuring fairness and preventing discriminatory outcomes requires a rigorous examination 
of training datasets, careful selection of representative samples, and the implementation of fairness-
enhancing techniques to minimize biases that could disadvantage certain groups. European 
Commission has launched Ethics guidelines for trustworthy AI, what determines AI as lawful, ethical 
and robust (European Commision, 2019).  

Privacy protection must also be addressed with utmost care. Organizations must navigate complex 
legal frameworks, such as the General Data Protection Regulation (GDPR), while safeguarding sensi-
tive data gathered from vehicle sensors, navigation systems, and connected infrastructures. This 
often involves employing data anonymization, secure communication protocols, privacy-preserving 
ML methods, and federated learning techniques that reduce the need to centralize potentially 
identifiable information. 

Beyond privacy, safety and reliability concerns are of great importance. Even minor algorithmic 
errors can have severe consequences on roadways where ML influences the control and navigation 
of vehicles. This necessitates stringent testing procedures, formal verification methods, and adher-
ence to industry best practices, to ensure that vehicles operate consistently, predictably, and safely 
under diverse and evolving conditions. 

Finally, accountability must be clearly delineated. Establishing frameworks that allocate responsibility 
when ML systems fail, underperform, or cause harm is essential. This involves maintaining thorough 
documentation of model development processes, decision-making criteria, and risk assessments, 
along with having robust incident response procedures.  
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5.2 Transparency in Decision-Making 
Equally important is the need for transparency and explainability. Transparency refers to the open-
ness and clarity with which the workings, decision-making processes, and limitations of ML systems 
are communicated, while explainability, a subset of transparency, focuses on making the decisions 
and predictions of ML systems interpretable and understandable to humans. Beyond meeting 
regulatory and societal expectations, these factors foster confidence that algorithmic decisions—
especially those impacting passenger safety and traffic management—are both justifiable and 
comprehensible. Since many ML systems are considered “black boxes” without clear insight into their 
proposed solutions, transparency and explainability are critical factors in making these systems 
understandable to humans, helping to avoid biases and build trust among users and stakeholders. 

To address the bias issues and promote responsible and transparent use of ML systems, Mitchell et 
al. (2019) introduced model cards—a framework for ethically documenting and reporting ML models' 
performance and intended use. This initiative laid the groundwork for transparency and accountabi-
lity in ML systems. Building upon this foundation, Kennedy-Mayo and Gord (2024) further expanded 
the conversation, reclassifying ethical considerations into trustworthiness, risk environments, and 
risk management, offering a more structured approach to AI safety and ethics. 

In order to ensure reliable, trusted outcomes a thorough evaluation of training datasets is required. 
Moreover, there is a need for a comprehensive documentation of trained ML models which includes 
metrics that assess bias, fairness, and inclusion. Such documentation as first suggested in the form of 
“Datasheets for Datasets” by Gebru et al. (2021). This framework emphasizes documenting the 
motivation, composition, collection process, and recommended use cases of datasets, enabling users 
to assess their appropriateness and limitations. 

Some of the other suggestions to ensure trustworthiness and transparency in ML systems are certi-
fication labels proposed by Scharowski et al. (2023). Certification labels are designed to communicate 
the trustworthiness of ML systems to end users, helping them compensate for their lack of expertise 
in interpreting the complex material included in the documentation. 

Approaches such as explainable AI methodologies (e.g., feature attribution like LIME or SHAP) and 
research into inherently interpretable model architectures have been gaining popularity during the 
last years. Techniques under this umbrella aim to make AI systems' decisions interpretable and clarify 
how inputs influence outputs, thereby making complex models more accessible to stakeholders. 

Explainable ML methods have also become of interest in post-accident analysis. Understanding why a 
model attributes a collision to certain contributing factors (e.g., poor roadway friction versus a 
distracted driver) is essential for legal investigations, insurance assessments, and policy formulation. 
Techniques such as SHAP can help interpret the influence of key features, enabling stakeholders to 
trust the outcomes of automated analyses (Atakishiyev et al., 2024). 

5.3 Regulatory Compliance 
When it comes to ML-based tools and ML-driven solutions, it is always important to ensure that they 
comply with regulations and legal standards. Failing to do so can lead to weakened public safety and 
a loss of trust between end users, regulators, and stakeholders. Nowadays, there are many discus-
sions about regulations for AI (Downes, 2023; Ruggeri, 2024; Stacey, 2023), and many countries are 
trying to implement guidelines. The EU has recently passed an AI law called the “AI Act” (European 
Commision, 2019; European Commission, 2021b), while the US-based National Institute of Standards 
and Technology (NIST) has released “Artificial Intelligence Risk Management Framework: Generative 
Artificial Intelligence Profile” (National institute of Standard and technology, 2024). There are 
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different aspects of ML-based technology that should be regulated. Here, we focus on the main 
issues and provide a general overview. 

First, safety standards are vital for the transport sector, and it is important to align technology with 
established standards to eliminate risks and provide reliable solutions. The International Organization 
for Standardization (ISO) has provided some guidelines, such as ISO 26262-1:2018 (Road vehicles — 
Functional safety), which describes safety-related systems that include one or more electrical and/or 
electronic systems installed in series production road vehicles (International Organization for 
Standardization, 2018), and ISO 21448:2022 (Road vehicles — Safety of the intended functionality), 
which provides guidance on measures to ensure the Safety of the Intended Functionality (SOTIF), i.e., 
the absence of unreasonable risk due to a hazard caused by functional insufficiencies (International 
Organization for Standardization, 2022). Not only should rigorously testing and validation procedures 
be incorporated to ensure reliable performance under different conditions and failures, but fail-safe 
mechanisms should also be implemented to prevent undesired outcomes in cases of malfunction. 

The European Union has implemented legislation mandating the inclusion of driver monitoring 
systems in new vehicles to enhance road safety. As of July 2022, all new car models in the EU are 
required to be equipped with driver drowsiness and attention warning systems designed to monitor 
driver alertness and provide warnings to prevent accidents caused by fatigue or distraction 
(European Commission, 2021a). 

Automotive manufacturers have responded by integrating machine learning-based solutions into 
their vehicle designs to comply with these regulations and improve overall safety. These systems 
utilize advanced algorithms to detect signs of driver drowsiness or distraction, thereby enhancing the 
vehicle's ability to prevent accidents (Kruszynska, 2024). 

While initial implementations focus on detecting drowsiness and distraction, ongoing research is 
exploring the detection of additional driver states, such as emotional stress or aggression, that may 
influence driving behaviour. Advancements in AI and ML are enabling the development of more 
sophisticated driver monitoring systems capable of assessing a wider range of cognitive and emo-
tional states, further contributing to road safety (Qu et al., 2024). 

Secondly, ML-based solutions should be explainable and transparent to demonstrate clear account-
ability. Providing necessary documentation that describes the design of ML algorithms and models, 
as well as information about training data, is one of the main requirements subject to audits by 
regulatory bodies. Critical safety systems should produce human-interpretable, explainable outputs. 
This further implies regulations for clear accountability in cases of failures or accidents, as well as 
requirements for reporting such cases to regulatory bodies. 

Thirdly, as all ML-based solutions rely on big data. Regulations should be in place to ensure that there 
is no bias or discrimination, enabling transport tools to securely and fairly operate while providing 
equitable outcomes across different scenarios (Federal Trade Commission, 2019). Data used in 
training should also comply with data privacy laws, such as the General Data Protection Regulation 
(GDPR). Such data should not only be anonymized but also encrypted and securely stored to protect 
individuals' identities and prevent data breaches. Regulations ensuring privacy, security, and fairness 
must be firmly established for any further AI technology development in the transport sector. 

Regulatory compliance is essential for the implementation, deployment, and adoption of ML-based 
technologies. Ensuring that such systems are fair, comply with ethical requirements, and secure 
public safety and trustworthiness is vital for the continued advancement of transportation technolo-
gies. 

Taken together, these factors underscore the necessity of an ethically grounded, well-regulated, 
transparent, and accountable approach to ML in the automotive sector and beyond. Ultimately, the 
sustainable adoption of these technologies depends on public trust, safety, and respect for funda-
mental human values. 
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6 Conclusion or Future Directions 
The automotive sector is undergoing transformative advancements that are redefining how we drive 
and experience safety on the roads. ML is at the forefront of these innovations, enabling smoother 
traffic navigation, timely alerts, and proactive risk prevention and mitigation. As ML technologies 
continue to evolve, their impact is expected to extend beyond individual vehicles to broader trans-
portation systems. Emerging integrations with intelligent traffic signals, connected road signage, and 
infrastructure sensors—key components of smart city initiatives—promise to enhance safety on a 
systemic level. Moreover, the safety of vulnerable road users, including pedestrians, cyclists, and 
motorcyclists, can benefit significantly from ML-driven detection and prediction tools. 

Despite the rapid progress in ML applications, several challenges remain before full-scale integration 
into the automotive sector can be achieved. While ML-based technologies offer promising predictive 
capabilities, concerns about their robustness persist. Ensuring the reliability of vehicle safety systems 
will require addressing issues such as cybersecurity, data privacy, and interoperability across manu-
facturers and other stakeholders. Additionally, fine-tuning ML algorithms demands complex multi-
objective optimization and further research into explainable ML and ensemble techniques to 
improve both accuracy and usability of predictive models. Continuous sensor updates and calibration 
are also essential to ensure the collection of reliable, actionable data, which can be integrated with 
other technologies to enhance the dependability and trustworthiness of safety systems. 

Looking ahead, ML applications in traffic safety are likely to expand further, seamlessly integrating 
with smart city infrastructure. Real-time data from connected intersections and adaptive traffic 
signals could complement ML-driven vehicle systems to create safer and more efficient traffic flows. 
Advancements in sensor technology and computer vision will also improve the detection and 
protection of vulnerable road users, ensuring that safety measures extend to all participants in the 
transportation ecosystem. These developments have the potential to revolutionize traffic safety and 
make roads safer for everyone. 
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