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I prosjektet GEOSFAIR (2021-2024) er det 
utviklet metoder for å utlede kvantitativ 
informasjon om snødekket fra GPR-data 
samlet inn med drone. En automatisk 
algoritme ble tatt i bruk for å finne snøoverflate 
og overgang mellom snø og bakke. Ved å 
bruke et tett datasett med GPR-linjer hver 50 
cm ble tiden signalene brukte gjennom snøen 
konvertert til snøhøyder, Dette ble 
sammenlignet med dronebaserte LiDAR-
undersøkelser og snøprofiler. I tillegg ble en 
maskinlæringsalgoritme testet for å utlede 
snøtetthet fra GPR-data. Dette viste lovende 
data ved testing på reelle målinger fra 2022-
2024.  

As part of the GEOSFAIR project (2021-2024), 
methods were developed to derive 
quantitative snowpack information from GPR 
data captured by UAS. An automatic picking 
algorithm was implemented to identify snow 
surface and snow-ground interfaces. Using a 
dense dataset with GPR lines every 50 cm 
recorded at Fonnbu in March 2024, travel 
times were converted to snow heights and 
compared with UAS-based LiDAR survey 
results. Different bare ground models were 
used for LiDAR snow heights. Additionally, a 
machine learning algorithm was tested to 
derive snow density from UAS GPR data, 
showing promising results when tested on real 
data from 2022-2024.

51 51



3 

 

 

  

Snowpack mapping with georadar (GPR) on UAS   

Quantitative analysis of GPR data for snowpack properties  

  

 

 

Authors:   

Martin Châtel, Bastien Dupuy, Madeline Lee, Arnt Grøver (SINTEF), Sean Salazar, 

Regula Frauenfelder (NGI), Halgeir Dahle and Tore Humstad (NPRA)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Published on January 7th, 2025, as a part of the GOESFAIR project, as deliverable 

D2.3 Sensor data interpretation (machine learning-based software) 

                            

 



4 

 

 

Content 

 

Abstract .................................................................................................................. 5 

1 INTRODUCTION ................................................................................................. 6 

APPENDIX: Geophysical snow-mapping using Ground Penetrating Radar (GPR) borne 

by Uncrewed Aerial Vehicles (UAVs) (Martin Châtel, 2024) ........................................ i 

 

 

 

 

 

 

 

  



5 

 

Abstract 

We present methods to derive quantitative snowpack information from GPR (Ground 

Penetrating Radar, in Norway often called ‘georadar’) data captured by UAS 

(Uncrewed Aerial System). After conventional data processing, we implemented and 

successfully tested an automatic picking algorithm that allows to identify and select 

snow surface and snow-ground interfaces automatically. Using an extensive 

spatially dense dataset (GPR lines every 50 cm) recorded at Fonnbu in Mars 2024, 

we apply this automatic picking algorithm and automatically determine the travel 

times between snow surface and snow-ground interface for the full area of interest. 

Using a density log derived in a neighbouring snowpit, we convert these travel times 

into snow heights. We test different spatial interpolation algorithms to derive snow 

height maps at different resolution and we compare these with snow height derived 

from an UAS-based LiDAR survey carried out on the same day. To calculate LiDAR 

(Light Detection and Ranging) snow heights, we used different bare ground models, 

including the national airborne LiDAR model (from høydedata.no), UAS 

photogrammetry and UAS LiDAR surveys carried out in October 2024.  

The second part of this quantification work consists in testing a machine learning 

algorithm to derive snow density directly from the UAS GPR data. We use a wave 

propagation modelling tool to generate an extensive dataset of synthetic UAS GPR 

data representing the variability of expected data for a variety of dry snowpacks. We 

use this synthetic dataset to train successfully a convolutional neural network. 

Testing the training on real UAS GPR data recorded at Fonnbu in March 2023 and 

2024 and at Storlidalen in March 2022 is promising and allows to recover snow 

density profiles which are consistent with observations from snowpits.  
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1 INTRODUCTION 

This report is mostly based on the master thesis by Martin Châtel (given in Appendix), 

master student at the École Polytechnique (Palaiseau, France) who has been carrying 

out his master internship at SINTEF during spring and summer 2024. Martin has been 

developing the automatic picking algorithms, deriving snow height maps and 

implementing the machine learning approach to derive snow density profiles.  

  

To complement his extensive work, we have been updating the snow height 

comparisons with newly recorded data in October 2024. Previous work compares the 

snow height map from UAS GPR data with the snow height map from UAS LiDAR survey 

using a bare ground model from the national airborne LiDAR model (from 

høydedata.no), see Figure 1. This bare ground model limits the spatial resolution, and 

comparisons were only possible using a Kriging interpolation with low spatial 

resolution. Despite this lack of resolution, Figure 2 still shows good agreement 

between the derived snow heights, even though a systematic underestimation of snow 

height is observed in the GPR data, likely due to some errors during automatic 

picking.  

  

New surveys, both UAS LiDAR and UAS photogrammetry, were carried out in October 

2024 by the Norwegian Geotechnical Institute (NGI) to derive a high-resolution bare 

ground model. The derived snow heights are given in Figure 3. Three different snow 

height models are calculated accounting for different bare ground models, where the 

snow height is calculated by subtracting the DEM (Digital Elevation Model) with snow 

cover from the DEM without snow. Overall, we observe that the snow height model 

using UAS LiDAR bare ground give the best resolution, similar for both interpolation 

sizes (5 and 25 cm).  

  

We then plot the differences between UAS GPR and UAS LiDAR snow heights for these 

three models (Figure 4). When comparing with the best resolution LiDAR model, we 

observe that the differences between the two snow height models are rather small 

and limited to specific areas. When we highlight these areas of larger differences (both 

positive and negative) in Figure 5, we see that most of the large differences’ areas are 

linked to strong topography features, such as large rock boulders and small branches 

of the creek. We think that this can be related to the fact that UAS GPR will be able to 

catch these small steep topography features while the DEM produced by the UAS 

LiDAR will have difficulty to map them. On the other hand, as we consider un-

migrated GPR data for the picking of the snow-ground interfaces – due to a lack of 

relevant EM (ElectroMagnetic) velocity model – some of these steep features are likely 

not located correctly and/or with incorrect slopes in the GPR data. More details on the 
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automatic picking methods, the spatial interpolation algorithm and the estimations 

of errors are given in the MSc thesis of Martin Châtel (Appendix).  

  

Overall, we confirm that UAS GPR data contains a lot of relevant information allowing 

the quantification of snow height and snowpack properties (i.e. density). Snow height 

mapping from GPR data shows to be possibly better than snow height mapping from 

LiDAR at mapping small ground features; a fact which can be crucial for local 

avalanche forecasting and identification of trigger points (shallower snowpack around 

boulders). The quantification of snow density using machine learning is promising 

and will benefit from further research to be validated and extended to wet snowpacks. 

It is important to keep in mind that the ability to resolve thin layers, whether in the 

GPR image or in the snow density model, will always be limited by the antenna 

frequency. With the 1 GHz broadband antenna used in this work, in a 300 kg/m3 

dense snow, the vertical resolution will be between 3 and 10 cm. In addition to their 

thickness, the resolution and identification of thin layers also strongly depends on the 

density contrast between them. Usually, a dense melt-freeze crust on top or bottom 

of low density snow will be possible to identify even if very thin.  
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Figure 1: Snow height maps from GPR and LiDAR data using RBF and Kriging interpolations. 

The UAS GPR snow height is calculated by down-sampling the GPR data (1 m resolution) and 

using a constant average EM wave velocity estimated from the nearby snowpit density log. 

The UAS LiDAR snow height is calculated by subtracting the DEM surveyed with UAS LiDAR in 

March 2024 (with snow cover) with the bare ground model of the national airborne LiDAR 

model. The maps are oriented to the North.  
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Figure 2: Comparison of UAS GPR and UAS LiDAR (with the national airborne LiDAR bare 

ground model) snow heights. From top to bottom: absolute error in %, absolute error in 

meters, longitudinal cross section at 9.516 m, longitudinal cross section at 30.05 m, 

latitudinal cross section at 34.16 m, latitudinal cross section at 102.7 m. The orange and 

blue lines stand for the snow height from UAS GPR and UAS LiDAR (with the national airborne 

LiDAR bare ground model), respectively. The orange shading gives an estimate of the GPR 

snow height uncertainty related to the uncertainty in snow density estimates in the snowpit 

(which affects the average EM velocity used to convert GPR data from time to depth).  
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Figure 3: Different snow height models calculated for the UAS LiDAR survey of 6th March 

2024. The bare ground model used to subtract the DEM with snow cover is either an UAS 

LiDAR survey, interpolated on 25x25 cm grid (top left), on 5x5 cm grid (top right), an UAS 

photogrammetry DEM on a 1x1 m grid (bottom right) or the national airborne LiDAR bare 

ground model (bottom right).   
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Figure 4: Snow height from UAS GPR data (top left). Differences between GPR snow height 

and LiDAR snow height with different bare ground DEM (Figure 3): UAS LiDAR bare ground 

(top right), the national airborne LiDAR bare ground model (bottom left), UAS 

photogrammetry bare ground (bottom right).  
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Figure 5: Highlights of main differences between snow height maps from UAS GPR and from 

UAS LiDAR (with UAS LiDAR bare ground). Positive and negative differences in white and red, 

respectively. 
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ABSTRACT

Unmanned Aerial Vehicle-borne (UAV-borne) geophysics and remote sensing are increasingly
utilized for monitoring the cryosphere. Snow cover measurements benefit greatly from airborne
remote sensing and geophysical data due to their extensive coverage, efficiency, non-destructive
nature, and safety. Ground Penetrating Radar (GPR) is particularly effective for snow measure-
ments as it relies on electromagnetic wave propagation, which is sensitive to snow properties.
For example, in dry snow, the propagation velocity is directly affected by the density variations
in the snow layers. Consequently, the electromagnetic (EM) energy emitted by the GPR sensor
is divided into reflected and transmitted waves at each interface where snow density changes,
including the snow surface and the snow-bedrock interfaces.

This capability makes GPR suitable for applications such as snow height mapping, glacier
mass balance assessment, and snow avalanche hazard analysis. These applications form the
core motivation behind the GeoDrones project, which aims to derive large-scale snowpack
information.

Achieving these objectives presents two major challenges: developing an algorithm that can
automatically identify the snowpack structure on a large-scale, and deriving the electromagnetic
(EM) velocity profile within the snowpack from signal amplititudes. The first challenge can be
addressed by detecting the major reflections from signal amplitudes variation, which correspond
to the air-snow and snow-rock interfaces. The second challenge is more complex and was tackled
by employing a Convolutional Neural Network (CNN) trained to predict a velocity profile from
a given signal trace.

This study leveraged a comprehensive range of GPR surveys, using 400 MHz and 1 GHz
antennas, conducted in various locations (Jufvonne, Storlidalen, and Fonnbu) between 2022
and 2024.

To summarize our results, we can first highlight that the picking algorithm successfully iden-
tified the snow surface and the snow-rock interface with an error of less than 10%. We observed
better accuracy on grassy or icy slopes than on heterogeneous rocky terrain. Subsequently, snow
height estimates were obtained for a 40×130m area and compared with low-resolution LiDAR
data. Notably, there was a good agreement between the two surveys, despite a 6% overes-
timation, likely attributable to either the automatic picking process or the reference data.
Furthermore, the machine learning algorithm effectively retrieved velocity profiles that were
consistent with LiDAR observations, exhibiting an absolute error of 5% and showing reliable
results for the detection of fine layers.
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RÉSUMÉ

La géophysique et la télédétection aéroportée par drone sont de plus en plus utilisées pour
surveiller la cryosphère. Les mesures de la couverture neigeuse bénéficient grandement de la
télédétection aéroportée et des données géophysiques en raison de leur capacité de couverture ,
de leur efficacité, de leur nature non destructive et de leur fiabilité. Le radar à pénétration de
sol (GPR) est particulièrement efficace pour les mesures de neige car il repose sur la propagation
des ondes électromagnétiques, sensibles aux propriétés de la neige. Par exemple, dans la neige
sèche, la vitesse de propagation est directement influencée par les variations de densité dans
les couches de neige. En conséquence, l’énergie électromagnétique (EM) générée par le capteur
GPR est partitionnée (réfléchie et transmise) à chaque interface où la densité de la neige change,
ainsi qu’à l’interface entre la neige et le sol.

Cette capacité rend le GPR adapté à des applications telles que la cartographie de la hauteur
de neige, l’évaluation du bilan de masse des glaciers et l’analyse des risques d’avalanches. Ces
applications constituent la motivation principale du projet GeoDrones, qui vise à dériver des
informations sur le manteau neigeux à grande échelle.

Atteindre ces objectifs présente deux défis majeurs : développer un algorithme capable
d’identifier automatiquement la structure du manteau neigeux à grande échelle, et déduire le
profil de vitesse électromagnétique (EM) au sein du manteau neigeux à partir des traces de
signal. Le premier défi peut être abordé en détectant les principales réflexions à partir des
variations d’amplitude du signal, correspondant aux interfaces air-neige et neige-roche. Le
deuxième défi est plus complexe et a été traité en utilisant un réseau de neurones convolutionnels
(CNN) entraîné à prédire un profil de vitesse à partir d’une trace de signal donnée.

Cette étude a utilisé une gamme large de relevés GPR, avec des antennes de 400 MHz et 1
GHz, réalisés dans divers endroits (Jufvonne, Storlidalen et Fonnbu) entre 2022 et 2024.

Pour résumer nos résultats, nous pouvons d’abord souligner que l’algorithme de sélection a
identifié avec succès la surface de la neige et l’interface neige-roche avec une erreur de moins
de 10 %. Nous avons observé par ailleurs une meilleure précision sur les pentes herbeuses ou
glacées que sur les terrains rocheux hétérogènes. Par la suite, des estimations de hauteur de
neige ont été obtenues pour une zone de 40×130 m et comparées aux données LiDAR à basse
résolution. Il y avait notamment une bonne concordance entre les deux relevés, malgré une
surestimation de 6 %, probablement due au processus de sélection automatique ou aux données
de référence. En outre, l’algorithme de machine learning a récupéré efficacement les profils de
vitesse qui étaient cohérents avec les observations LiDAR, avec une erreur absolue de 5 %, et
a montré des résultats fiables pour les couches fines.
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- 1 -
INTRODUCTION

1.1 Presentation of the Geodrones and Geosfair project

Norway’s mountainous terrain and remote locations make its road and train infrastructure cru-
cial but also highly susceptible to natural hazards, particularly snow avalanches. Additionally,
the country’s topography and climate render it prone to other natural hazards such as land-
slides, rockfalls, and floods. With rising temperatures and changing precipitation patterns,
these hazards are expected to worsen, increasing the vulnerability of Arctic regions and Nor-
way as a whole. Consequently, monitoring spatiotemporal changes in snow cover has become
critically important, even extending beyond the Arctic regions.

Snow height, defined as the vertical distance from the base to the snowpack surface, is es-
sential for estimating glacier mass balance and forecasting geohazards such as avalanches. One
can also derive the snow height and snow density profile to obtain the Snow Water Equivalent
(SWE) which is crucial for preventing floods, debris flows and even for supporting the hy-
dropower industry (which produces the major part of electricity in Norway). On the other hand,
understanding the layering and density variations within the snowpack is vital for avalanche
forecasting, especially for slab avalanches, where stability depends on the density contrasts and
snow grain sizes, such as a high-density slab layer atop a low-density weak layer.

To optimize spatial coverage, resolution, and data quality, the Geodrones project proposes
using Unmanned Aerial Vehicle-borne (UAV-borne) Ground Penetrating Radar (GPR) systems
to derive large-scale snowpack information. The project aims to map and monitor natural
hazards using multipurpose UAVs, focusing on building an autonomous geo-drone platform and
developing innovative real-time data processing and analysis approaches to support decision-
making. The first demonstration of UAV-borne GPR reliability is focused on snow and ice
because GPR has a good penetration in it. But the results could outpass this domain and
have application in archeology for example. Indeed, the Geodrones project, which is a Strategic
Internal Project (SIP) funded by SINTEF, not only focuses on snow mapping but more broadly
aims to develop drone expertise applied to geoscience, with a budget of 14 MNOK (1.2 MEUR).

This project is also supported by the GeoSFAir (Geohazard Survey From Air) initiative,
funded by the research council of Norway and by Statens vegvesen, the Norwegian Public
Road Administration(NPRA), in collaboration with SINTEF and the Norwegian Geotechni-
cal Institute (NGI). Currently, Statens Vegvesen relies on visual observation, hand-dug snow
pits, stationary sensors, and weather station data to make decisions regarding road closures
and re-openings. Therefore, the project aims to enhance remote information collection using
sensors-equipped drones, reducing the risks to employees and reaching inaccessible areas. A
schematic representation of the drone flight, shown in Figure 1, demonstrates its capability for
autonomous operation in sloping terrain, enabling both surface and subsurface mapping. This
interdisciplinary project combine snow science, geotechnics, geophysics, remote sensing, drone
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Figure 1: Schematic representation of the drone flight (SFM means Structure from motion
and is a photogrammetric range imaging technique for estimate surface shape), credit Sintef
Industri

and robotics, and decision making studies. Spanning from 2021 to 2024, it has a total funding
of 11.9 MNOK(1.1 MEUR) (with 3.1 MNOK allocated to SINTEF).

The GeoSFAir project is divided into four scientific work packages (WPs). The first two
WPs, led by SINTEF, focus on hardware (aircraft platforms and sensors) and software (mission
planning, automation, and processing workflow). WP3, managed by NGI, is dedicated to field
demonstrations and interpretation of results. Finally, WP4, led by NPRA, will integrate the
outcomes of WP1, WP2, and WP3 to enhance decision support.

1.2 My Role in the Project

To achieve snow height mapping, glacier mass balance estimation, and snow avalanche hazard
assessment, a primary challenge is to derive snow height from the two-way travel time of
waves. This internship is structured to address this issue through three primary objectives:
automating the picking of main horizons, the application of this method to perform a 2D
mapping of snow height and the derivation of the EM velocity via a neural network training.
Specifically, my mission is to develop algorithms that will be integrated into a larger, already
well-advanced processing workflow which has been implemented by Arnt Grøver. The goal of
this processing is to transform the GPR raw data (see Figure 2b) into either a snow height map
(see Figure 2c) or, even, a snow layer map(see Figure 18). In Figure 2, a raw signal trace and
its associated raw profile are displayed, representing the juxtaposition of 930 traces recorded at
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5 cm intervals during the drone flight. Even if we can see the snow-ground interface (around 50
ns of travel time in the middle of the profile) it is harder to visualize air-snow interface (around
25 ns) and it is evident that raw profiles require preprocessing to enhance their readability.
Subsequently, snow height must be extracted from these profiles to facilitate large-area snow
height mapping. If the pre-processing workflow has already been implemented(cf:2.2 Data Pre-
Processing Workflow) the second phase will be the main focus of my internship. Essencially,
the program will be implemented in a GPR data processing app that can be automatized to
be used by non-geophysicists. The final aim for them is to be autonomous for using the drone
especially in the interpretation of the GPR data to help them in decision making in the closing
of the roads. This part of the project logically falls under WP2 (mission planning, automation,
and processing workflow), led by Bastien Dupuy, my supervisor. To achieve my mission, I can
count on the help of my colleagues and particularly Bastien Dupuy and Arnt Grøver.

(a) Trace n°400 recorded by the drone

(b) Trace juxtaposition forming the raw profile

(c) Snow depth mapping interpolated from 3 segments spaced
by 10m each

Figure 2: (a) amplitude of a raw signal trace (b) Raw GPR profile where the traces of the signal
recorded every 5cm of the drone flight and combined in a profile which shows the intensity of
the received signal in µV (c) Snow depth mapping derived with the information contained in 3
raw profiles spaced by 10m
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1.3 Litterature Review

GPR has proven to be effective in snow mapping. Di Paolo et al. [1] demonstrated that GPR can
derive estimates of snow properties, snow density, and Snow Water Equivalent (SWE), which
correlate well with time-domain reflectometry (TDR) measurements. Similarly, Godio et al. [2]
validated an upward-looking GPR with a 1500 MHz antenna, using TDR at a fixed location to
derive snow density. Additionally, Griessinger et al. [3] used multioffset ground GPR to derive
snow ablation rates for avalanche forecasting. In their work, travel times were calibrated using
density profiles to calculate permittivity with empirical relationships, which have proven to be
accurate according to Di Paolo et al. [4]. This ultimately allowed for the derivation of snow
height variations along the measured sections. Finally, Dupuy et al. [5] shows the relevance of
the uses of UAV in GPR snow mapping, by validating the repeatability of UAV-borne GPR
data and showing the rapidity of such a method. This study also investigated optimal flight
parameters, such as altitude and speed, to maximize Signal-to-Noise Ratio (SNR). Additionally,
it emphasized the significance of antenna frequency, noting that higher frequencies yield better
resolution but reduced depth penetration. The study also outlined pre-processing techniques
to enhance GPR data utilization, including the use of an open-source R library developed by
Huber and Hans [6]. Figure 4 illustrates the workflow, showing clear visualization of the air-
snow and snow-rock horizons after the sixth step. You will notice that the vertical axis is in
time domain since to derive snow height further steps are needed.

First, we need to identify the different layers in the snow profile and then derive permit-
tivity to obtain EM velocity at each point. To streamline the identification of the main hori-
zons, several methods were evaluated: Thresholding, Short-Term-Average/Long-Term-Average
(STA/LTA), computer vision, and machine learning algorithms. While the STA/LTA method
(Wong et al. [7]) and machine learning algorithms (Mardan [8]) are well-documented in seis-
mic data analysis, their applicability to GPR data, which uses electromagnetic waves, is less
clear. Dossi et al. [9] applied computer vision for automated layer picking in GPR data and
subsequent Snow Water Equivalent (SWE) inversion for glaciers.

The STA/LTA method, which identifies signal peaks where the short-term average sig-
nificantly exceeds the long-term average, was found to generate numerous outliers, requiring
substantial refinement to be practical. Computer vision techniques showed promise for detect-
ing intricate interfaces within the snowpack but seemed overly complex for identifying main
layers. Machine learning algorithms, while potentially powerful, require extensive training data,
which was not available, and function as black boxes, complicating interpretability.

Based on a review of the literature and preliminary tests, my supervisor (Dupuy) determined
that a basic thresholding algorithm could be effective. I developed this algorithm to identify the
first point in each trace where the signal exceeds a predefined threshold. With added features
such as automatic outlier removal based on layer continuity, this method proved accurate. It
was chosen for its simplicity, speed, and effectiveness, although future exploration of other tech-
niques, such as computer vision for intermediate interfaces, is recommended. To our knowledge,
this approach has not previously been referenced in the GPR snow data literature.

In the domain of snow height mapping, a primary challenge is to derive permittivity from
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signal traces. To avoid this, a first possibility is to use snowpits to obtain permittivity profiles
based on density profiles. Extensive literature covers this topic, with Di Paolo et al. [4] providing
a comprehensive overview of the empirical and physical relationships linking snow density to
permittivity. However, snowpits offer only point measurements, and density profiles can exhibit
significant variability according to Machguth et al. [10]. Furthermore, density measurements
are not systematically performed in snowpits, and while it is possible to derive snow density
based on hardness and grain type, this method has very low precision Kim and Jamieson [11].

Machine learning methods have shown promise in deriving permittivity profiles from signal
traces. Leong and Zhu [12] employed an approach that involved generating a synthetic dataset
of paired permittivity profiles and associated signal traces, following the methodology of Irving
and Knight [13]. They then trained and tested an encoder-decoder based convolutional neural
network (CNN) on this synthetic data, where the signal amplitudes are the features and the
velocity profile the labels. The CNN utilized the DeepLabV3 architecture, which is known
for its accuracy in feature extraction from images. The model’s accuracy was subsequently
validated on real data.

- 2 -
METHODOLOGY

2.1 UAV and GPR Hardware Configuration

Depending on desired penetration and resolution, we utilize two types of GPR systems provided
by Radar Systems Inc., mounted on a commercial off-the-shelf quadcopter, the DJI Matrice
300 RTK. The high-frequency system is a shielded bistatic antenna with a theoretical central
frequency of 1 GHz and an operating bandwidth of 600-1300 MHz at -6 dB. It is important to
also note that, in general, an antenna has a theoretical spatial resolution of λ/10 (ranging from
3 cm in air to 1.7 cm in ice for a 1 GHz antenna). However, in practice, the resolution is often
lower and can even decrease to λ/2. The transmitter and receiver are separated by 17cm and
synchronised. It records 512 samples per trace with a time range to be chosen between 50 and
300 ns, it measures both magnetic and electrical field and gives the amplitude result in µV.
With such sampling, 50 traces per second can be recorded and if its flies at a velocity of 2 m/s
you may record a trace every 4 cm. The antenna and embedded electronics have a total mass
of 1.7 kg.

A down-forward-looking radar altimeter (Nanoradar NRA24 24 GHz) is combined with
terrain-following software UgCS (Universal Ground Control Software from SPH Engineering)
to allow for precise pre-determined flight paths close to the surface. An on-board PC (SPH
Engineering Skyhub) is used to connect the altimeter to the flight controller and to log the
recorded GPR data. GPR antennas are powered by the UAV batteries and georeferencing
of the GPR traces is done using the aircraft’s GNSS receiver. Real-time kinematic (RTK)
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Figure 3: Picture of the high frequency system (1 GHz shielded antenna) mounted on a com-
mercial UAV (DJI Matrice 300 RTK) and using a radar altimeter and onboard computer for
terrain following and data logging (credit Sintef Industri)

positioning can also be used to enhance the precision of position data if needed. Pictures of
the two GPR systems mounted on the UAV are displayed in Figure 3.

2.2 Data Pre-Processing Workflow

To enhance the readability of the data, several pre-processing steps are necessary. You can
clearly see it on Figure 4 where the different steps described below have been plotted. This
presentation of the workflow is largely inspired by Dupuy et al. [5] who coded it.

Step 1: Even if the aircraft flight speed is pre-programmed to be constant between way-
points, small variations in speed are still present due to wind and adjustments in flight altitude.
The first step consists of extracting profiles between each waypoint and performing spatial in-
terpolation at a regular distance based on GPS coordinates.

Step 1b (optional): The profile can be over-sampled to compensate for non-optimal time
range choice when the time range is too large compared to the actual reflection times but also
to give to the trace a more natural way. It then gives the impression of getting a better vertical
resolution (by increasing the number of pixels)

Step 2: Time zero correction is done to adjust all traces to the same virtual time zero of
the source antenna. This step crops the direct air signal by calculating the associated time
based on a given amplitude threshold.

Step 3: Background removal is carried out by calculating a mean trace over the full profile
and subtracting it from every trace. This step is enough to remove most of the low-frequency
content and the source ringing effects.

Step 4: Band-pass filtering is done with a Butterworth filter to remove additional low and
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high-frequency noise, if needed.
Step 5: Amplitude correction (gain) is crucial to boost late arrival amplitudes and to

correct for geometrical spreading (use of a power gain).
Step 6: Deconvolution following the approach of Schmelzbach and Huber [6]. This step is

time-consuming for large profiles but is useful to derive true amplitude reflections by decon-
volving the signals from the source wavelet effect. It also allows us to obtain the source wavelet
of the data which will be useful for the training of the neural network to derive permittivity.

Step 7(optional): A static correction is done for topography correction by shifting each
GPR trace by the relative two-way travel time of propagation in the air from the relative
altitude of the UAV with respect to the take-off altitude.

(a) Step 1: Extraction of raw data for segment 2

(b) Step 1b: Resampling

(c) Step 2: T0 correction

(d) Step 3: Background removal

(e) Step 4: Bandpass filter

(f) Step 5: Power gain

(g) Step 6: Mixed phase deconvolution

(h) Step 7: Topo correction

Figure 4: Pre-rocessing workflow, coded by Grøver and Dupuy[5], on a Storlidalen segment
taken in 2022
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2.3 Algorithm Development and Implementation

2.3.1 Fundamentals of GPR Wave Propagation
To explain the algorithm used to derive snow height from Ground-Penetrating Radar (GPR)
data, it is essential to first comprehend the significance of the obtained GPR data. As illustrated
in Figure 4g, the air-snow interface at the top and the rock/snow interface at the bottom are
detectable due to significant variations in permittivity. At the interface between two media,
the electromagnetic wave experiences transmission and reflection—phenomena that are well
understood. To elucidate the principles of this physical phenomenon, we will examine the
simple case of normal incidence of an electromagnetic (EM) wave crossing the interface between
two media.

Assuming the medium is free of charge and current (ρ = 0 and j = 0), we can rewrite
Maxwell’s equations as follows:

∇ · E = 0 (Maxwell-Gauss)
∇ · H = 0 (Maxwell-Flux)

∇ × E = −µ
∂H
∂t

(Maxwell-Faraday)

∇ × H = ϵ
∂E
∂t

(Maxwell-Ampere)

(1)

Where ∂
∂t

is the partial derivative with respect to the time,E is the electric field, H the magnetic
field strenght (H = B/µ with B the magnetic flux density), µ the magnetic permittivity and ϵ
the electric permittivity in the medium considered.

Epsilon is a complex number such as ϵ = ϵ′′ + ϵ′, but we neglect the imaginary part (which
means no attenuation) such as: ϵ = ϵ′. Additionally, we neglect the influence of conductivity
(σ = 0). These assumptions are quite accurate for dry snow (the medium under study) and
for certain types of rocks (Lavoué [14], p.40). However, for wet snow, even if (σ ≈ 0 in pure
water), we must account for the absorption due to the imaginary part of water permittivity
(see Figure 5). This attenuation, combined with the high permittivity of water (ϵ′ = 80 at 1
GHz), significantly reduces the penetration depth of the GPR signal.

In order to understand what happen when the GPR wave strike an interface, lets consider
a wave striking an interface between two different media with normal incidence. The direction
(Oz) is perpendicular to the interface. Given the rotational symmetry about the (Oz) axis,
the distinction between transverse magnetic (TM) or transverse electric (TE) polarization is
unnecessary because both are analogous. To simplify, let’s focus on the TM case (Figure 6).

The continuity of total fields implies:{
E+

1 + E−
1 = E+

2 + (E−
2 )

H+
1 + H−

1 = H+
2 + (H−

2 )
(2)

Here, the terms in parentheses correspond to an incident wave originating from the right,
coming from medium 2. This wave is not considered, as we are only interested in how a wave
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Figure 5: Permittivity of ice and water (Chaplin [15]) with respect to frequency. Note that for
the 1 GHz antenna, ϵ′′ = 0 for ice and ϵ′′ > 0 for water.

Figure 6: Electromagnetic wave striking a diopter with normal incidence (from Grandin lecture)

originating from medium 1 (E+
1 ) is transmitted into medium 2 (E+

2 ) or reflected back toward
medium 1 (E−

1 ). By using wave superposition and Maxwell-Ampere equation the total fields
can be expressed (disregarding the temporal component of the fields, which is the same for all
waves) as : 

E(z) = E+(z) + E−(z)

H(z) = 1
η

[
E+(z) − E−(z)

]
where η =

√
µ

ϵ

(3)

By using this equation in (2), we obtain:
E+

1 + E−
1 = E+

2
1
η1

[
E+

1 − E−
1

]
= 1

η2
E+

2
(4)
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Introducing the reflection coefficient (ρ) and the transmission coefficient (τ), we obtain the
following equations:

ρ = E−
1

E+
1

; τ = E+
2

E+
1

(5)

Which lead to the Fresnel formulas:

1 + ρ = τ ; ρ = η2 − η1

η2 + η1
; τ = 2η2

η2 + η1
(6)

Which can be reformulated by neglecting magnetic permeability (µ) variation:

ρ =
√

ϵ1 − √
ϵ2√

ϵ2 + √
ϵ1

; τ = 2√
ϵ1√

ϵ2 + √
ϵ1

(7)

Thus, for small permittivity variation (ϵ1 ≈ ϵ2), the entire wave is almost transmitted (ρ ≈ 0
and τ ≈ 1). However, for large variations, such as between air (ϵr = 1) and ice (ϵr = 3)
or between ice and rock (for granite ϵr ≈ 4 − 6 [14], p.40) , a fair part of the EM energy is
reflected at the interface. Thanks to this brief and idealized introduction to reflection, we can
better understand why significant reflections occur at the air-snow interface and the snow-rock
interface. To build a more accurate model, we should consider a multilayer model, account for
the angle of incidence and its impact on reflection and transmission, diffraction due to scattering
points, and even interferences. However, we will not delve further into these calculations, as
they are not the focus of this paper. Instead, we will refer to the model made by Garambois
(from the University of Grenoble), which we will use in the second part of this study when
creating models (pair of velocity profile and synthetic wave trace) to train a neural network.
To justify this approach, we should also recall that permittivity variations are directly correlated
with EM velocity variation since c = c0/

√
ϵr where c0 is EM velocity in the air.

2.3.2 Description of the Automatic Picking Algorithm
The obvious consequence of high reflection and signal intensity at the main horizons is the
need to employ an algorithm that pick where the signal amplitude exceeds a given threshold.
Therefore, we naturally opt for such an algorithm. However, a significant challenge in this
automatic picking process arises from potential outliers, as some traces of the profile are subject
to noise (e.g. scattering points, non GPR EM signal like telephone network etc..). Consequently,
we refined our algorithm to ensure an accurate selection of the horizons (see the different steps
explained below on Figure 7).

Step 1: We use the drone’s altimeter, which provides an approximate distance between
the drone and the snow surface, to select a time window around this estimated horizon for
threshold-picking.

Step 2: a) Normalize the traces within the window using MinMaxScaler. b) Pick the first
point that reaches the threshold called tAS for "threshold air-snow" (read "Appendix 1: thresh-
olding notebook" for more details). c) Suppress outliers by considering the deviation of the
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Cut around probable

Air/Snow interface given

by drone altimeter

a)MinMax

Normalisation

b) Threshold-picking

c) Suppression of 

outliers

by using continuity

1𝑠𝑡: contunuity by the right

2𝑛𝑑: continuity by the left

Cut below Air/Snow interface, given by the 

automatic-picking

(a) Step 1-2-3: Air-Snow interface picking

a)MinMax

Normalisation

b) Threshold-picking

c) Suppression of 

outliers

by using continuity

1𝑠𝑡: contunuity by the right

2𝑛𝑑: continuity by the left

(b) Step 4: Snow-Ground interface picking

Figure 7: Scheme of principle of automatic picking algorithm (a) Air-Snow interface picking
(b) Snow-Rock interface picking
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punctual picks from a moving average, with increased smoothing where picking is discontinu-
ous.

This last step (2.c) is performed twice: first using a left-deviated window to calculate the
moving average for ensuring continuity to the right, then using a right-deviated window.

Step 3: Using the picking of the air-snow interface, cut the profile to keep only the part
below this horizon. This step will prevent from picking twice the same interface and is therefore
interesting for the picking of the snow-rock interface.

Step 4: Repeat Step 2 for the Snow-Ground interface with adjusted parameters, such as
a higher threshold and reduced smoothing of the moving average (i.e.,use of a smaller window
for the computation of the moving average).

- 3 -
TESTING AND RESULTS

3.1 Field Site Description

During the winter and spring seasons of 2022 and 2023, a large number of tests has been
carried out at different sites in Norway. Here, we will test our automatic-picking algorithm on
three of these sites located in central and western Norway (Figure 8 (top left)) which covers
different types of snow conditions. The goal is to analyze the reliability of an automatic picking
with a wide range of variation. This field site description was written using the pictures and
information from Dupuy et al. [5].

Figure 8 provides pictures of the sites.

Storlidalen : Storlidalen is located in Oppdal municipality, in Trøndelag county (see Figure 8
(top left)). The test site is located at the western end of the valley at 620-630 meters above
sea level (masl). The field site is characterized by an ESE facing slope where eastward
dominant winds play a major role in snow distribution, leading to large variability in
snow depths between the top of the slope (western part, close to bare ground due to snow
drift eastward), the middle of the slope (maximum snow depth due to snow transport
from west) and the bottom of the slope (eastern part, almost no snow accumulation; see
Figure 9a).

Fonnbu : Fonnbu is located in the Stryn municipality in Vestland county (see Figure 8 (top
left)). The site is located in the alpine valley of Grasdalen at 930-940 masl near the
avalanche research station of the Norwegian Geotechnical Institute (NGI). The station is
mostly sheltered from the dominant eastward winds by Sætreskarsfjellet summit on the
west (1606 masl). The ground is mostly granit with visible rocks and water (which turn
into ice in winter). UAV-borne GPR surveys have been carried out in March 2022, March
2023 and March 2024 but we will only use data from the two last surveys.
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Figure 8: Top left: overview map of the field site locations. Top right: Picture of Fonnbu in
summer to visualize the presence of rock on the field. Bottom left: map of Storlidalen including
location of GPR surveys (red lines) and snowpits (black stars).The background map combine
contour lines and snow depth derived by UAV-borne LiDAR surveys. Bottom right: picture of
the field site in Jufvonne.

Juvfonne : Juvfonne field site is located in Lom municipality, which belongs to Innlandet
county (see Figure 8 (top left)). The site comprises a glacier patch located between
1852 and 1958 masl (2019 mapping) and which has been monitored with mass balance
measurements since 2010 [62]. The terrain is steep (between 20 and 35 degrees) and is
representative of alpine terrain with lateral relief variations.

3.2 Validation Methods

3.2.1 Validation Method for Automatic-Picking
To validate our automatic method, two methods were envisaged:

• The comparison with a manual picking on different field data ;

• The comparison on a large scale results with LiDAR data.
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(a) Storlidalen, 2022, homogeneous grassy field in slope(see Figure 8), antenna
1GHz

(b) Fonnbu, 2023, heterogeneous rocky field in valley(see Figure 8), antenna
1GHz

(c) Jufvonne, 2023, homogeneous rocky field in slope(see Figure 8), antenna
400MHz

(d) Table comparing the absolute and relative error in cm of snow and in %
of of the average snow height (see detailed errors in Annex)

Figure 9: Comparison between manual picking and automatic picking in terms of(top) snow
height and (bottom) absolute snow difference (by using an averaged relative permittivity in the
snow of ϵ = 2
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The primary objective of developing this automatic-picking algorithm was to automate
a process that was initially performed manually. Once its consistency with manual picking
is established, we will apply it to a larger dataset, which is currently impractical to analyze
manually due to time constraints. This section will compare the algorithm’s results with manual
picking, while a subsequent section will discuss the comparison with LiDAR data on a larger
scale.

To facilitate the comparison between manual and automatic picking, we estimate snow
height. We approximate the EM velocity in snow as constant (c = c0/

√
ϵr with ϵr = 2),

providing an initial error estimate in snow height. Although this is a strong approximation,
it gives us a reasonable error estimate in snow height, our ultimate parameter of interest.
Additionally, we compute the percentage error, which is independent of this approximation
and consistently yields a Mean Absolute Error of less than 10% (see Figure 9). We will show
later how we can derive permittivity from the GPR profile and obtain a more accurate snow
depth prediction (3.3.2 GPRNet Results).

It is important to note that achieving these results required adjusting the input parameters
for different field cases, particularly the approximate minimum snow height (Snowheightmin).
This adjustment aids the algorithm in identifying the second main horizon, which should cor-
respond to the snow-rock interface. For instance, in Jufvonne(Figure 9c), setting a larger
minimum snow height prevents confusion between snow intern reflections and snow-rock reflec-
tions, whereas in Storlidalen (Figure 9a), a lower minimum snow height is necessary to correctly
identify the bedrock on the left side (almost 0cm).

Therefore, while the algorithm is not entirely automatic and requires appropriate input
parameters to function effectively, these inputs do not require substantial changes. Instead,
minor adjustments to the Snowheightmin and thresholds for the air-snow interface (tAS) and
snow-rock interface (tSR) are sufficient to achieve reliable results(further details of the imput
parameters in the "Appendix 1: thresholding notebook")

To account for the uncertainty in manual picking, we conducted two manual pickings on the
same segment to identify challenging areas. Figure 10 highlights these difficult-to-pick regions.
In some locations, it was challenging to determine the exact rock-snow interface. Therefore,
we performed two types of picking: one aimed at identifying the highest plausible rock-snow
horizon and another at the lowest plausible horizon (while maintaining relevance). Although
this approach is not rigorous to account for picking uncertainty, it serves as a reminder that
manual picking is not always an absolute reference, especially in rocky terrains.

To conclude, we can briefly summarize the hypotheses made to build this algorithm:

1. For each trace, there is always one point (and only one) where air meets snow and one
point where snow meets rock.

2. There are strong reflections at the air-snow and snow-rock interfaces.

3. The interfaces are continuous.

4. The snow is dry.

We can then provide examples where our algorithm will need refinement. If there are
locations in the profile where there is no snow, hypothesis 1 is no longer valid. Additionally,
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(a) Fonnbu, 2024, rocky field, antenna 1GHz

(b) Fonnbu, 2024, GPR profile

Figure 10: Comparison between manual picking and automatic picking in terms of snow height
by using an averaged relative permittivity in the snow of ϵr = 2

it is less effective on very light snow due to its reliance on reflection intensity (hypothesis 2).
Indeed, when the initial snow layer is so light that it has a permittivity almost identical to air,
a stronger reflection may occur at the light snow-dense snow interface rather than the air-snow
interface. There is finally one last issue that should be addressed: the algorithm tends to pick
slightly below the manual picking results (see Figure 9b and in the Figure 9d), which may
lead to an overestimation of the snow height. We will see what error it can leads to in the
computation of the snow height in part 3.3.1.

3.2.2 Validation Method for CNN Velocity Prediction
1. Min-phase wavelet extraction: In Section 2.2 (Data Pre-Processing Workflow), we

discuss the deconvolution step, which is also pertinent for extracting the source wavelet
of the signal. It is crucial to use a source wavelet that closely approximates the real
one. To maintain generality, we performed the source wavelet extraction on 1000 traces
from several surveys (Storlidalen2022, Fonnbu2023, and Fonnbu2024) using the same
antenna (see Figure 11). We then averaged these wavelets, which were consistent with
each other, apart from some ringing effects that were removed to retain generality. We
finally obtained a wavelet which looks like an asymmetrical ’Ricker’ wavelet(see Figure
11) with a mean frequency of 0.8 GHz (<1GHz due to some loss of energy). We tested the
wavelet on different profiles of snowpack using an mdem hardcoded algorithm developed
by Garambois et al., inspired by Irving and Knight [13]. Mdem is a modelling tool which
is computing EM wave propagation in a stratified medium with a propagator matrix
method. It allows fast calculation of the GPR signal compared to conventionnal finite
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difference approaches and is valid for zero offset data such as drone GPR data where we
locally neglect horizontal heterogeneities.

Figure 11: (left) Comparison of the min-phase wavelet extracted from different surveys, (mid-
dle) comparison of the wavelet before and after damping in the time domain, and (right) in the
frequency spectrum obtained after Fourier transform.

Table 1: Overview of the parameters used in the snowpack random generation and their asso-
ciated random distribution (* for normal distribution 95% of the values should be contained
between the min and the max)

2. Random production of 50,000 models of pairs of snowpack profile and their
associated synthetic GPR trace: Once satisfied with our wavelet, we used it to
generate pairs of models (snowpack profile plus associated traces generated by mdem). To
achieve this, we first defined the parameters of the function to create a random snowpack
profile (function implemented by Arnt Grøver where I just had to modify parameters
and distribution function to optimize the training) with a random number of snow layers
and random permittivity (see Table 1 for more details). We aimed to keep the model as
physical as possible without overfitting by using data too similar to what we intended
to find. One might question why synthetic data is used. The primary issue is the lack
of sufficient real data for training a neural network, making synthetic data necessary.
After generating the synthetic dataset (10,000 models takes 5 hours), we augmented it
by adding 4 different random sinusoidal noises (within the bandpass filter range used for
the real data) to each trace, resulting in 50,000 different models but only 10,000 different
velocity profiles. The idea was to show to the CNN that the same velocity profilein the
snowpack could lead to different signal trace due to the noise. One can visualize a pair
of velocity profile and trace associated before and after the adding of the noise on Figure
12. You can clearly see on both traces that large variation in velocity profile lead to
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Figure 12: (left) random snowpack from the dataset, (middle) associated trace before transfor-
mation, and (right) after random noise addition.

large amplitude as it was supposed. Additionally, we applied a spatial filter to attenuate
the trace before the air-snow interface and after the snow-rock interface to focus on the
snowpack. This approach demonstrated to the neural network that multiple traces could
exist for the same snowpack due to noise.

3. Training and testing of the CNN on the synthetic data: To derive permittivity
variation, we employed an encoder-decoder-based convolutional neural network (CNN)
called GPRnet developed by Leong and Zhu [12]. The CNN utilized the DeepLabV3
architecture, known for its accuracy in feature extraction from images. We split the
synthetic data into training, validation (99% of the data), and testing (1% of the data)
sets. The dataset is composed by 50 000 models generated before, in each model the
signal trace is composed by 1024 points which represent the features and the velocity
profile is the label. The training and validation yielded good results (R2 = 97% after
5 hours of training, see Figure 13), and tests on synthetic data showed high accuracy
too (R2 = 97%). We can well visualize on Figure 13 that the neuron network is able to
reproduce with good approximation the velocity profile except some small variation.

4. Testing on real data: The initial step with real data is preprocessing to make it resemble
the synthetic data: resampling to be on the same time range (with 1024 samples), t0
correction, and reshaping to include only 1 meter of air (the synthetic data is generated
by assuming that the drone GPR is always located at 1m above the snow surface)) and
attenuating before and after the snowpack. This is feasible now that the air-snow and
snow-rock interfaces are known. However, power gain adjustments are unnecessary as our
model accounts for geometrical spreading. The primary challenge when testing on real
data is verifying the accuracy of the profiles generated. At the beginning the verification
was only visual, and we could improve our training and refine the models. Nevertheless, we
could also validate quantitatively the average velocity found for each trace by comparing
it with LiDAR data and examining the patterns identified, especially when a light snow
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Figure 13: (left) Results, in terms of loss by calculating (mean square error (MSE)) and
R2 score, obtained on training set and testing with respect to the number of epochs and
(right)Random Snowpacks velocity profile from the test set and the CNN prediction associated

layer exists on a dense layer. This will be discuss further in 3.3.2 GPRNet Results.

3.3 Results

3.3.1 Snow Depth Large Scale Results
Given that our picking algorithm achieved a mean absolute error of approximately 10% during
initial validation, we deemed it suitable for subsequent comparisons of snow depth predictions
with LiDAR data. We must first recall that LiDAR uses a laser(wavelength between 600 and
1000 nm) which is ideal for surface modeling whereas GPR (wavelength between 0.3m and
30m) excels in subsurface imaging and detection, revealing hidden structures. This comparison
necessitated breaking the process into multiple steps. Prior to executing the full procedure,
we rigorously tested the first two steps on a few segments to fine-tune the parameters and
estimate the required processing time. The dataset comprised 100 profiles, each containing 2.5
million pixels (900 x 2600), necessitating meticulous step-by-step optimization to ensure timely
processing. This dataset represents a 40m x 130m area (see Figure 14), emphasizing the need
for computational efficiency.

1. Pre-processing of the dataset (as described in Section 2.2): To optimize calcu-
lations, we utilized only the initial five steps (see Figure 4), as the mixed-phase decon-
volution significantly increased processing time by several minutes per segment and was
not essential for the picking process. Ultimately, processing the entire dataset ( 250 MB)
took approximately 15 minutes using a computer with a Ryzen 5 processor and 8GB of
RAM.
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Figure 14: Fonnbu 2024 field survey(blue and red lines represent the GPR lines flown in 5
different surveys). The total GPR survey area is 40 by 130 m, and GPr lines are spaces every
0.5 m. The background map is the snow depth derived by UAV-borne LiDAR survey. The
black star is the location of the snowpit we use to derive a velocity profile (see Figure 12) and
the blue rectangle the NGI avalanche research station

2. Picking of the main interfaces: Minimal parameter adjustments were required for
our algorithm to align with the 2024 Fonnbu survey. The choice of a simple thresholding
algorithm combined with dimensionality reduction proved effective, completing the entire
survey in just one minute. This picking gives us the two way travel time of the wave in
the snow and to convert into a snow height we need the EM velocity.

3. Estimation of the average velocity in the snow: This step was first achieved by
deriving permittivity profile from a snowpit density profile made on the zone. Our goal
was to determine an objective average velocity for use throughout the entire survey. This
approach is similar to the validation method described in section 3.2, but in this instance,
we used a snowpit where a density profile was measured to calculate the velocity profile
(see Figure 15). The figure on the left(on Figure 15) shows a synthetic snow density
profile generated by the Snowpack SLF simulator using 2021 meteorological data from
Stryn. The approximation made by discretizing the density profile into a small number
of layers (as shown on the middle) is evident. However, the density measurement was
precise, calculated by averaging two or three measurements. Given our goal of obtaining
an average velocity for the snowpack, this level of precision was sufficient for our needs.
To derive velocity from snow density, we employed the empirical formula c = c0/(1 +
0.85ρ), where ρ is the relative density, c0 is the EM velocity in the air, and c is the EM
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velocity in the snow(c = c0/
√

ϵr). This formula is considered the most general according
to Di Paolo et al. [4], who conducted a critical review of existing permittivity formulas.
Ultimately, we obtained an average velocity in the snow of 22 ± 2 cm / ns, which means
ϵr = 1, 9 ± 0, 3.
We also use the GPRnet prediction to measure snow height (15s for one profile) but we
did not expand it on the whole dataset because there was not strong variation between
GPRNet prediction and snowpit one. However this is still an interesting way to go further
in snow height measure and we will try to measure the velocity prediction accuracy in
3.3.2 GPRNet results (but on an easier dataset: Storlidalen). To visualize GPRNet results
on Fonnbu2024 dataset you can read "Appendix 3 : GPRNet prediction notebook".

Figure 15: (left)Simulated snowpack with snowpack slf simulator (Bavay and Egger [16]) thanks
to Stryn meteorological(2021) data, (middle) density profile measured during a snowpit by
discretizing the snowpack in a snow pit of 2.7m depth digged in Fonnbu on march 2024 [17], in
the snow we can visualize the 13 layers of the snowpack and (right) Velocity profile from which
we find an averaged velocity of cavg = 22 ± 2cm/ns

4. Interpolation of GPR results and interpolation of the LiDAR data on a 2D
map: This step posed the greatest challenge due to the need to identify a cost-effective
interpolation predictor capable of handling snow depth data. For instance, applying
kriging interpolation to a dataset of 50 segments, each containing 125 snow depth points
(totaling 6000 points and 1mx1m grid resolution ), took 1.5 minutes, while interpolating
2500 points required only 15 seconds. This interpolation was performed on a lozenge grid
(60x300 pixels) with a resolution of 0.7 m x 0.4 m pixels. For more details, see "Appendix
2: interpolation notebook". To compare LiDAR data with GPR data interpolated we had
to somehow resample LiDAR snow map to make it fit GPR data. That is why we tried
to perform the same interpolation as the one conducted on GPR.

5. Comparison of interpolations and data: We first compared different interpolation

26/37



Internship report

methods, focusing on Ordinary Kriging and Radial Basis Function (RBF) interpolation
after considering the different possible interpolation presented by Mitas and Mitasova
[18].
Ordinary Kriging and RBF interpolation are established methods for predicting unknown
values from spatially distributed data. Ordinary Kriging employs a variogram to model
spatial correlation, assigning weights to minimize prediction variance, thus providing
accurate estimates. RBF interpolation constructs an interpolation surface using distance-
based radial basis functions, resulting in a less smooth interpolation but without the
need for spatial correlation modeling. Both methods are computationally intensive, with
Kriging also demanding significant memory resources.

Figure 16: Comparison between GPR and LiDAR interpolation dor snow depth mapping on
Fonnbu2024. On the left the map are obtained thanks to RBF interpolation and on the right
thanks to kriging interpolation (absolute and relative error between LiDAR and GPR are listed
in Table 2). The red dotted line represent the approximated location of the segment represented
on Figure 17

We demonstrate that kriging interpolation provides the best fit to the LiDAR data by
smoothing the profile and removing some artifacts, while the RBF interpolation is still
useful, as it preserves raw data patterns. Figure 16(bottom left) illustrates that the
LiDAR snow depth resolution is relatively low, approximately 1 meter, due to the ground
truth data used. Kriging interpolation increases resolution and improves the fit between
GPR and LiDAR data. We are now awaiting a new LiDAR survey in the summer to
achieve better ground resolution for a more accurate comparison. However, as shown in
Table 1, we achieved a snow resolution of about 20 cm (11%), which is quite good given
the low resolution of the reference data.
Additionally, we compared the interpolation on a segment to evaluate whether interpo-
lation could reduce artifacts and better align with the LiDAR reference. Although this
result requires refinement once we obtain the ground truth, Figure 17 and Table 2 show
that interpolation brings us closer to reality. In Figure 17, one can see the snow depth
derived from manual picking, automated picking, automated picking interpolated with
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kriging (all three depth profiles calculated with c = 22 cm/ns), and LiDAR data interpo-
lated with kriging. Notably, the interpolated GPR segment is closer to the LiDAR data
(see Table 2) than the non-interpolated one, likely because the interpolated one accounts
for the entire survey. Nonetheless, we still observe a significant relative error (around +6%
on the entire map), indicating an overestimation of snow depth. This overestimation may
be due to the automatic picking process (as we already saw in Figures 9 and 10), the
velocity approximation, or the low resolution of the reference data. Furthermore, if the
manual has for sure a lower relative error on this segment (-4%) its has a large absolute
error(16%) so the overestimation of the automatic picking may not be sufficient to explain
the observed difference. Consequently, it is difficult to draw definitive conclusions until
we have more precise reference LiDAR data.

Figure 17: Comparison of snow height for manual picking, automatic picking, interpolated
automatic picking and interpolated LiDAR on a segment (the same one that was considered
on Figure 10 and represented by the dotted line on Figure 16). The absolute and relative error
between LiDAR and GPR are listed in Table 2.

Table 2: Overview of the relative and absolute errors in cm of snow and in % of mean snow
depth with MAE= avg(abs(SnowDepth − SnowDepthref ))
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3.3.2 GPRNet Results
Having demonstrated that our CNN performs well on synthetic data, we will now present its
performance on real data. We will discuss its ability to predict both the average EM velocity
in the snowpack and the density variations. For average velocity prediction, we used the
Storlidalen data because the ground was homogeneous, grassy and easy to pick (see Figure
9a), and we had a LiDAR snow map to serve as a reference. Figure 18 shows our ability to

Figure 18: (left)Smooth velocity profile predicted by GPRNet in depth domain and (right) the
pair of snowpack predicted from the trace assiociated

plot a velocity profile in depth domain. This was achieved by combining all the 1D velocity
predictions from the algorithm (like the one plotted at the right of Figure 18), smoothing the
results with a Gaussian filter, and then reshaping the profile to represent it in the depth domain.
The gaussian filter is quite important because it gives horizontal continuity in the snowpack
to correct the fact that the GPRNet predicts 1D models that do not take into account any
horizontal continuity.

We then used this velocity profile, along with the automatic picking, to obtain the snow
depth from GPRNet. We compared it with the LiDAR data (see Figure 19) and found that
they are very close, even though it appears to underestimate the snow height by around 5% on
average. To further analyze, we plot the velocity distribution by column of snow (900 columns,
see Figure 19), noting that the maximum occurrence velocities are even closer than the mean
velocities (less than 3%), which is very encouraging. To calculate this velocity distribution we
used one the one hand the GPRNet prediction and on the other hand the snow depth measured
by LiDAR divided by the travel time of the GPR in the snow-pack measured by the automatic
picking.

To explain the difference between the histogram shapes (one has a tail to the left and the
other a tail to the right), we point out that on the left side of the Storlidalen profile, we
significantly underestimate the snow depth due to the large bedrock slope angle (about 40°,
see Figure 18(left)). This phenomenon occurs because the beam is not perfect and corresponds
to a cone, causing the shortest two-way travel time of the EM signal to be oblique rather than
vertical, which can lead to significant error when the slope is steep (see Figure 23 in the appendix
to visualize this error). And since this error impacts the two way travel time estimated by the
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automatic picking and used to calculate LiDAR velocity profile. A well-known algorithm called
migration, available in RGPR ([6]), can correct this. However, this algorithm requires the EM
velocity in the snow to be tested. Therefore, we have not applied it yet but will consider it to
improve our results.

Figure 19: (top) Comparison between LiDAR snow depth interpolated with RBF and GPRNet
prediction from automatic picking on the Storlidalen segment we used in Figure 18, (bottom)
Histogram comparison of average EM velocity in column of snow (900 columns concerned)
between LiDAR(calculated by dividing LiDAR depth measure by automatic-picking travel-
time measure) and GPRNet prediction.

Finally, to verify that GPRNet can identify major velocity variations (indicating significant
density differences), we tested it on a survey conducted in Fonnbu on 15 March 2023, when
new snow had just fallen on the upper part of the snowpack, which was frozen and dense.
This resulted in a light snow layer over a dense snow layer. In this scenario, it was easier to
detect the internal interface rather than the air-snow interface (see Figure 20) because the first
reflection was very light. It is noteworthy that our algorithm could identify both the light
and dense layers. Indeed, you can see on the 1D profile we extracted (Figure 20 (left) that
the CNN predicts well the presence of a fine dense layer(around 2.4 m depth below the drone)
below a lighter layer(2.2 m-2.4 m). However, it cannot do this consistently across the entire
survey(see on the profiles between 12 and 23 m), likely due to an underestimation of the bedrock
permittivity(see Table 1). Because a high permittivity of the ground (which can be due to the
presence of liquid water ϵr = 80 leads to a very high reflexion which leads to a poor resolution
of the rest of the trace after the normalisation by the maximum. This could be improved by
increasing the number of models that account for higher bedrock permittivity.
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Figure 20: (Top)Data after processing(time domain),filtered before snow surface and after snow-
ground interface, (bottom) Density profile depth converted and smoothed from Fonnbu2023
dataset and (right) an extracted trace to show the density variation between the light layer and
the dense one (even if the profile is a bit too continuous)

- 4 -
CONCLUSION AND FURTHER WORK

This study demonstrates the effectiveness of combining unmanned aerial vehicle (UAV)-borne
geophysics and remote sensing for comprehensive snowpack monitoring. The use of Ground
Penetrating Radar (GPR) in conjunction with advanced algorithms has proven to be a powerful
method for measuring snow properties, such as snow height and density, across large scales. By
employing a Convolutional Neural Network (CNN) and automatic picking algorithm to predict
electromagnetic (EM) velocity profiles from signal traces, we addressed significant challenges
in automating snowpack identification and velocity profile derivation.

Our results indicate that the developed picking algorithm accurately identifies the snow
surface and snow-rock interface with an error margin of less than 10%. Accuracy is notably
higher on grassy or icy slopes compared to heterogeneous rocky terrains. High-density snow
height estimates for a 40 x 130 m area showed good agreement with low-resolution LiDAR data,
despite a 11% average absolute error likely due to limitations in automatic picking or reference
data resolution. The machine learning algorithm provided effective velocity profiles consistent
with LiDAR observations (with a 5% absolute error) and demonstrated reliable performance
for detecting fine layers.

Despite the promising results, several challenges remain that must be addressed to improve
the accuracy of our methods. First, the picking algorithm could be enhanced by incorporating
variable uncertainty. This could be achieved by calculating the difference between its initial
guess and the final smoothed result obtained through continuity enforcement. Such an approach
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would provide better confidence in snow depth mapping by indicating whether errors are due to
the automatic picking process, the EM velocity predictor, or the propagation of the EM wave
itself.

Furthermore, our neural network was trained with a limited range of basement permittivity
values. This limitation may reduce its ability to accurately detect bedrock with liquid water,
which has a relative permittivity of 80. Testing the network under such conditions and training
it with a more diverse dataset could potentially enhance its robustness and efficiency.

Additionally, the velocity prediction capability now allows us to incorporate a migration
step into our processing workflow. This step is crucial for converting apparent dips into true
dips and for suppressing diffraction hyperbolas, thereby improving the overall accuracy of our
snow depth measurements. Future work will focus on these enhancements to further refine our
approach and extend its applicability to a wider range of environmental conditions.
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ANNEX

(a) Fonnbu, 2024, rocky field, antenna 1GHz

(b) Fonnbu, 2024, GPR profile

Figure 21: Comparison between manual picking and automatic picking in terms of snow height
by using an averaged relative permittivity in the snow of ϵr = 2
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(a) Storlidalen, 2022, homogeneous grassy field in slope(see Figure 8),
antenna 1GHz

(b) Fonnbu, 2023, heterogeneous rocky field in valley(see Figure 8), an-
tenna 1GHz

(c) Jufvonne, 2023, homogeneous rocky field in slope(see Figure 8), an-
tenna 400MHz

Figure 22: Comparison between manual picking and automatic picking in terms of(top) snow
height and (bottom) absolute snow difference (by using an averaged relative permittivity in the
snow of ϵ = 2
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Figure 23: Diagram showing the raypath for a reflection from a dipping reflector and the
resultant apparent dip (from wikipedia "Seismic Migration")
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