

1

Foreword

The public sector is becoming more and more standardised in its choice of IT
products. Statskonsult wishes to point out the disadvantages of an over-
standardised policy, and to assess the alternatives to the current solutions.

This report assesses a special phenomenon in software development called
“Open-Source Software”. One example of open-source software is the
operating system Linux.

The report assesses whether open-source software can provide the public sector
with a freer choice of supplier, and whether it can reduce total IT costs.

The report was written over an extended period of time. During this time,
Statskonsult tested a number of different types of open-source software. The
majority of staff in the IT Department of Statskonsult, internal IT operations
staff and other interested parties from other departments, participated in the test.
We also requested opinions from other departments in the public sector. Mr.
Endre Grøtnes was project leader.

The report was written originally in Norwegian and translated into English. A
lot of background information was trans lated from English into Norwegian for
the compilation of the Norwegian version. Due to the translation back and forth
there might be some minor inconsistencies in the text, especially in chapter 3-5.

Any comments to the report would be welcomed, and comments can be sent to
Statskonsult (directorate of public management) at the following e-mail
address: postmottak@statskonsult.dep.no or endre.grotnes@statskonsult.dep.no
.

Oslo, August 2001.

Jon Blaalid

2

1 SUMMARY..4

2 INTRODUCTION..5

2.1 BACKGROUND...5
2.2 SUPPLIER INDEPENDENCE ...6
2.3 AIM OF THE REPORT AND HOW IT WAS CARRIED OUT ...7
2.4 THE REPORT ..7

3 OPEN-SOURCE SOFTWARE...8

3.1 WHAT IS OPEN-SOURCE SOFTWARE?...8
3.2 PRINCIPLES OF OPEN-SOURCE SOFTWARE...8
3.3 DIFFERENCES BETWEEN OPEN-SOURCE SOFTWARE AND OTHER SOFTWARE.......................9
3.4 BRIEF DESCRIPTION OF OPEN-SOURCE SOFTWARE LICENCES...9
3.5 EXAMPLES OF OPEN-SOURCE SOFTWARE..11
3.6 DEVELOPMENT METHODS FOR OPEN-SOURCE SOFTWARE..13
3.7 WHAT TYPE OF SOFTWARE IS BEST FOR DEVELOP ING OPEN-SOURCE SOFTWARE ?...........14
3.8 ADVANTAGES OF OPEN-SOURCE SOFTWARE ..15
3.9 DISADVANTAGES OF OPEN-SOURCE SOFTWARE ..16

4 LINUX .. 18

4.1 WHAT IS A LINUX DISTRIBUTION?...18
4.2 THE LINUX KERNEL ...18
4.3 DESIGN TARGETS FOR LINUX ...19
4.4 GRAPHICAL USER INTERFACE ...19
4.5 COMPILERS..20
4.6 SOFTWARE DEVELOPMENT ...20
4.7 LICENCE TERMS FOR LINUX..20
4.8 VARIETY OF DISTRIBUTIONS...20

5 FINANCIAL ASPECTS OF OPEN-SOURCE SOFTWARE... 22

5.1 BUSINESS METHODS FOR OPEN-SOURCE SOFTWARE ...22
5.2 FINANCING OPEN-SOURCE SOFTWARE DEVELOPMENT ...23
5.3 SIGNIFICANCE OF OPEN-SOURCE SOFTWARE ON TOTAL IT COSTS......................................24

6 EXAMPLES OF THE US E OF OPEN-SOURCE SOFTWARE IN PUBLIC
ADMINISTRATION... 26

6.1 THE UNIVERSITY OF OSLO..26
6.2 HØLE PRIMARY SCHOOL...26

7 COMMERCIAL SERVICES FOR OPEN-SOURCE SOFTWARE IN NORWAY. 27

7.1 PURCHASING SOFTWARE...27
7.2 PURCHASE OF COMPUTERS WITH READY-INSTALLED SOFTWARE.......................................27
7.3 CONSULTANCY SERVICES..27
7.4 COURSES AND TRAINING...27

8 USE OF OPEN-SOURCE SOFTWARE AS A STANDARDISATION AND
DEVELOPMENT TOOL... 28

8.1 THE IETF AND OPEN-SOURCE SOFTWARE..28
8.2 INTERNET AND OPEN-SOURCE SOFTWARE REFERENCE IMPLEMENTATIONS......................28
8.3 OPEN-SOURCE SOFTWARE AS A CATALYST FOR THE SP READ OF NEW STANDARDS..........29

9 ASSESSMENT OF THE APPLICATIONS OF OPEN-SOURCE SOFTWARE 30

9.1 ASSESSMENT METHODS FOR OPEN SOURCE SOFTWARE..30
9.2 WHICH BRANCHES OF PUBLIC ADMINISTRATION ARE BEST SUITED TO USING OPEN-
SOURCE SOFTWARE ?...31

3

9.3 WHAT TYPES OF OPEN-SOURCE SOFTWARE IS SUITABLE FOR PUBLIC ADMINISTRATION?
 31

10 CONCLUSIONS, MEASURES AND RECOMMENDATIONS.................................... 33

10.1 CONCLUSIONS..33
10.2 WAYS OF INCREASING THE USE OF OPEN-SOURCE SOFTWARE34
10.3 RECOMMENDATIONS..36

APPENDIX I REFERENCES ... 37

APPENDIX I ABBREVIATIONS ... 38

APPENDIX III GPL (GNU GENERAL PUBLIC LICENCE) .. 39

APPENDIX IV THE BSD LICENCE (BERKELEY SOFTWARE DISTRIBUTION) ... 47

4

1 Summary
The press, people in the IT industry, and politicians have all recently been
looking at Linux as an alternative to Windows. For this reason, and because
Statskonsult would like to reduce supplier-dependency and the cost of buying
software, the following report has been drawn up.

Linux is an open-source, freely available operating system. An open-source
program means that the source code of the program is freely available; it can be
used, altered, improved, extended and redistributed by anyone.

Statskonsult has assessed the suitability of Linux and other open-source
software in the light of information it has collated, discussions with the
companies in the field and its own tests. As well as being able now to form a
more balanced opinion as to the usability of open-source software in
administration, we have documented how open-source software will affect the
development of the IT infrastructure.

Statskonsult believes that Linux and other open-source software have great
potential – particularly in the areas of infrastructure development, the design of
standards, and in teaching and training. At present, there are insufficient end-
user, open-source programs for administration to replace its current software.
There are no accounting programs, or corporate control systems, for Linux, for
example.

Open-source software is currently an important contributor to the development
of the Internet infrastructure. The basic standards for transferring data between
computers, for sending e-mail and translating Internet addresses are all
available as open-source software. The standards have also been developed and
specified through an open-source process.

The recommendations for open-source software can be summarised as follows.
?? The use of open-source software to reduce costs would be beneficial for

companies where IT costs are incurred primarily through the purchase of
software licences, and where the costs of training users to use new software
are relatively low.

?? Linux is ideal as a server operating system, even for the public sector. We
do not believe that open-source software for end-users can currently replace
the commercial end-user alternatives.

?? The state should urge schools and the education sector in general to use
Linux and other open-source software.

?? The state should support the development of open-source software. Support
could be offered in the form of research and development funding. In
allocating research and development funds, the state should require that the
software developed be made available as open-source software.

5

2 Introduction

2.1 Background
In its survey called “IT in the public sector 1999”, 1 Statskonsult obtained the
following figures on Microsoft’s dominating position as the standard IT
platform in the public sector.
?? 96% use MS Word as their word-processor.
?? 91% of the companies in the survey had a Windows NT server, and

Windows NT was the operating system used by 60% of all servers.
?? Over 60% of all client computers used Windows as the operating system. 2
?? Outlook and MS Mail accounted for 44% of all e-mail clients.3

Due to the dependence of public administration on one supplier, as indicated by
the statistics, and to the ever- increasing costs of IT in general, it is only natural
to consider alternatives to the Windows/Office platform.

The press, people in the IT industry, and politicians have all recently been
looking at Linux as an alternative to Windows. In this report, we have defined
Linux as an open-source, freely available operating system.4

Statskonsult has chosen to evaluate open-source software because it appears to
provide opportunities to:
?? reduce supplier-dependency in public administration;
?? reduce the costs of buying software for public administration.

Public administration will only begin to use open-source software if it is easy to
buy, install and operate. There must also be a substantial range of software to
run on the operating system, so that standard office duties and other tasks can
be carried out on it. Open-source software (such as word-processors and e-mail
clients) intended for end-users must also be equally as user- friendly as the
equivalent proprietary5 products before the public administration will start to
use it.

Statskonsult is responsible for the standardisation of data communications and
appurtenant infrastructure in public administration. We have therefore also
assessed how open-source software can help promote joint standards for the

1 Statskonsult report 2000:8. IT in the public sector 1999.
2 IT in the public sector 1999 did not ask directly which client was used, but based on the
answers concerning use of the server operating system and the number of PCs / terminals
connected, we have estimated this figure as the minimum.
3 This was before the public sectors changeover to Outlook.
4 We will use the term “open-source software” for the type of software that will be discussed in
this report. English terms include “Free Software” and “Open-Source Software”. See also the
chapter on “open-source software” for a more detailed description.
5 In this report, we will be using the term “proprietary software” for all software that is not
open-source software.

6

exchange of information within public administration and between public
administration and the outside world.

2.2 Supplier independence
One of the reasons why Statskonsult is evaluating open-source software is to
determine whether the use of such software could reduce supplier-dependency
in the public sector. This section looks at the disadvantages of excessive
dependency on one supplier.

The concept of supplier independence is often perceived as being real
competition. That is, we, as buyers, can select from a number of suppliers and
products when we want to buy a product or service. Dependence on one sole
supplier can be perceived as a monopoly situation and is undesirable. All the
rules governing purchases in the public sector are based on the principle that
there are several suppliers and that real competition exists between them.

Monopoly situations may lead to slower product development, poorer services,
higher prices and greater vulnerability because only one product is used. In
NOU 2000:24 “A vulnerable society” it says: “Some suppliers have virtually a
monopoly on software development. The disadvantages of such monopolies are
not only related to the power such monopolies command in the market, and the
inflated costs that they generate due to the lack of competition, but also the
dependence of the market on them and the scale of damage if something goes
wrong.”

Product development. It is generally assumed that competition accelerates
product development and yields products that are better suited to end-users’
requirements. There is currently considerable debate in IT circles as to whether
end-users are best served by buying products from different suppliers, or
whether it is in their interest to buy all products from the same supplier. In this
report, we take the view that plurality of suppliers gives users greater choice
and, hence, a greater opportunity to find the products and services required.

Services. Competition is particularly important in this area in order to ensure
that users obtain the service they want at a reasonable price. In a monopoly
situation, users have to accept what they can get. In the majority of telecom and
IT areas, monopolies have been dissolved in order to improve the competition
for services. One example of this is the dissolution of the telecom monopoly.
This has led to a free market where any party can offer telecom services, and
prices have consequently dropped considerably. In this report, we take the view
that competition for services is of unconditional benefit for users.

Monoculture. The extensive use of a single product leads to what we call
“monocultures”. Monocultures are very fragile when faults appear in the
respective product. One example of this in the IT world is the fault that arose in
Intel’s processors recently. This led to computer retailers not being able to meet

7

the demand for new computers. Intel has virtually a monopoly on the
manufacture of PC processors.

Statskonsult views open-source software as supplier- independent. The main
reasons for this are:
?? different suppliers can supply the same product since all specifications,

documentation and even the source code are available to everyone;
?? no patents have been taken out on the software, and there are no restrictions

on the use of any part of the software by any party.

2.3 Aim of the report and how it was carried out
The aim of the report was to assess how suitable the various forms of open-
source software was for the public sector.

We have concentrated on assessing potential applications of the software in
public administration, the financial consequences of choosing open-source
software, and how such software can reduce supplier-dependency.

We tested a number of distributions of the operating system Linux, the e-mail
server, Sendmail, and the web server, Apache, all open-source programs. The
report concentrated on the use of open-source software for servers, but some
attention was also given to its use for client machines. We also assessed the use
of open-source software as a means of promoting standardisation.

We obtained feedback from various important groups and individuals who use
open-source software in the public sector. Certain examples of how open-
source software is used are described in this report. We also established contact
with parties offering a variety of services relating to open-source software.

We encouraged and received considerable feedback, enquiries, and
contributions from outside companies while we were compiling the report. We
have made every effort to consider this feedback in drawing up the report.

2.4 The report
Chapters 3–5 describe what open-source software is, different financial models
for open-source software, and the most widely used open-source software.

Chapter 6 gives examples of open-source software in the public sector. Chapter
7 describes in brief the open-source software and services currently on the
market in Norway. Chapter 8 discusses, in particular, the potential of open-
source software to promote standardisation, and Chapter 9 assesses applications
of a variety of open-source software. Chapter 10 summarises the conclusions
and recommendations we reached.

8

3 Open-source software

INFORMATION, NO MATTER HOW EXPENSIVE TO CREATE, CAN BE REPLICATED
AND SHARED AT LITTLE OR NO COST.

? Thomas Jefferson

Sharing and copying information is now even easier than it was in Thomas
Jefferson’s day. It is worth noting that (the source code of) software is also
information, and that the quotation can equally be applied to software. It is the
ease with which information can be disseminated to large user groups over long
distances6 that explains how open-source software had gained the significance it
has.

3.1 What is open-source software?
Open-source-code software, or open-source software, as we will call it in this
report, is not easy to describe in only a few words. This is because there are a
number of variations and definitions of the concept. The following description
is only a summary, not a definition. In the following section, we will describe
our interpretation of the concept “open-source software” by presenting the main
principles of the concept.

An open-source program means that the source code of the program is freely
available; it can be used, altered, improved, extended and redistributed by
anyone.

There are clear definitions of both “open-source software”7 and “free
software”. 8 Our interpretation of “open-source software” is that which fulfils
the terms described in Section 3.2.

3.2 Principles of open-source software
The characteristics of open-source software are that it gives users9 the freedom
to:
?? use the program however they wish, on as many computers as they wish,

and in any situations they wish;
?? adapt the software to meet their requirements; improve the software, fix

bugs, expand the software, and study how the software works;

6 This can be interpreted as the availability of the Internet.
7 The Open-Source Initiative’s definition of open-source software is available at:
http://www.opensource.org/osd.html
8 The Free Software Foundation’s definition of “free software” is available at:
http://www.fsf.org/philosophy/free-sw.html
9 In open-source software environments, “users” are interpreted as skilled program developers
and not just “point and click” end-users. The user perspective in the field is very developer–
oriented.

9

?? re-distribute the software to other users who can then, in turn, adapt it to
their requirements.

To fulfil the requirements above, there is one more condition that must be met:
?? Users must have access to the source code of the software.

Having the source code to a program, which will usually be written in a high-
level programming language like Java, C, or C++, is essential for users to be
able to understand how the program is built up and works, and to be able to
adapt it, expand it, or fix bugs in it.

To maintain the freedom described in this section, it is necessary to protect the
software with licence conditions and/or by copyright. This may seem rather
paradoxical, but if software is not protected by licence conditions (called
“public domain” software), anyone can copyright it, redistribute it without the
source code, or use the source code as the basis for proprietary software. A
variety of open-source software licences is described in Section 3.4.

3.3 Differences between open-source software and

other software
Open-source software is not the same as freeware. Freeware is the name of
compiled10 programs that are distributed free-of-charge. There is a great deal of
freeware available – everything from small help programs to well-known
programs such as Microsoft’s Internet Explorer.

Commercial software sold without the source code being available, and without
the right to change or redistribute it, is called proprietary software. It is the
licence conditions, in particular, of such proprietary software that has prompted
the development of open-source alternatives. The majority of licences impose
restrictions on the number of computers the software can be installed on, the
right to change the software, and the right to redistribute it.

The licence conditions for proprietary software grant users the right to use the
software subject to specific terms, not to owning the software.

3.4 Brief description of open-source software licences
The subject of licence conditions for software is vast. We have chosen to
illustrate, below, a number of examples of the contents of open-source software
licences and to explain why the designers have drawn up such licence
conditions.

10 A compiled program can be read by the hardware that is to use the program, and not by
people. A program that is written in a language that people can understand is compiled into a
language that the computer can understand. If you distribute only the compiled program, it is
only the computer that can read and understand it.

10

The first licence for open-source software was developed by Free Software
Foundation and related to its GNU11 software. A description of the principles of
this licence can be found at: http://www.gnu.org/copyleft/copyleft.html. The
GNU software licence is called “GNU General Public Licence” and has become
known simply as GPL. 12 This licence is reproduced in full as an appendix to
this report. GPL is the basis of the majority of other open-source software
licences. The Open-source Initiative had stipulated the conditions that must be
met for a licence to be called an open-source software licence.

Two examples of open-source software licences are attached as appendices to
this report: GPL (Appendix III) and BSD (Appendix IV).

One of the main reasons creating licence restrictions for open-source software
is to protect the software from losing its open-source character. As mentioned
above, open-source software can be made proprietary software if it is not bound
by licence conditions. Licence conditions may include, for example:
?? safeguarding the free characteristics described in Section 3.2
?? safeguarding the conditions that the original designers aspired to (that the

names of the original designers always be present, that the licence be
distributed with the software, etc.)

?? safeguarding the rights of the program designers and of those who have
copyright to the name of the software

?? charging designers of new software based on open-source software to
ensure that such new software is also open-source software

?? charging all designers of software that uses open-source software to ensure
that such software is also open-source software.

The various licences differ most in relation to the last two points above. While
GPL is very strict in stipulating that all software based on the original code
must also be made freely available, BSD-related licences grant the right to
design proprietary software based on the original source code.

Open-source software licences do not prevent companies from selling such
software, nor from earning money from such activities. Those who sell open-
source software, however, cannot prevent other parties from selling the same
software. The licence conditions cannot be used to restrict anyone’s right to
copy, or to change the software, and any programs sold must always be
accompanied by their respective source code. GPL maintains that alterations
and improvements in the code must also be considered open-source, and that
anyone can use such new code, too. A good example of this is the installation
program “RPM” (RedHat Packet Manager), designed by the Linux distributor,
RedHat. This program is also distributed by Caldera and SuSE. Thus, any
improvements made by one distributor can be used by the other distributors.

11 GNU is a recursive acronym for “Gnus not Unix”
12 The original text is available at: http://www.gnu.org/copyleft/gpl.html

11

It must be clearly stated on the packaging of open-source software distributed,
that distribution is covered by an open-source software licence. Everyone has
the right to assemble packages of open-source software and to distribute them.

3.5 Examples of open-source software
There is a great deal of open-source software available. Many of the most
popular programs on the Internet are open-source programs. Such programs are
often developed in open projects. In this case, a project is a small core of
developers who publish new versions of a program, and who coordinate and use
the input of a large number of contributors to enhance the program. Below is a
short description of some of these programs.

3.5.1 Linux
Linux is the program that grabbed the attention of everyone previously outside
the culture of open-source software; it is the program that most people refer to
when trying to explain what open-source software is.

Linux, or, more accurately, GNU/Linux, is an operating system similar to
UNIX. Linux is designed to complay to the POSIX standard to be as compatible
as possible with other UNIX systems.13 A program developed for a POSIX
operating system should, in theory, be usable on all operating systems
following the POSIX standard.

Linux was originally designed for running on Intel-based PCs, but is now
available for other platforms, such as Macintosh, Alpha 14 and Sun SPARC.

Linux was developed and is distributed under the terms of GPL. This means
that Linux can be distributed freely as long as the source code accompanies the
program. If any parties want to distribute changes and modifications they make
to Linux, they must also distribute the source code for such changes. In this
way, the GPL ensures that the Linux operating system remains open-source and
that no one can create a proprietary version of it. See Chapter 4 for more
information on Linux.

3.5.2 Apache
The Apache projet is a voluntary development project aimed at creating a
robust, commercial-grade, featurful, and freely-available source code
implementation of an HTTPserver (henceforward called, slightly inaccurate,
a”web server”).

The Apache server is the most used web server on the Internet, and has approx.
60% of the market, according to the surveys carried out by Netcraft. There are

13 POSIX has been published as “IEEE Standard 1003.1-1988 Portable Operating System
Interfaces for Computer Environments” and as ISO/IEC 9945.1: 1990.
14 This was formerly DEC Alpha, but is now Compaq Alpha.

12

currently over five million Apache web servers on the Internet.15 For a full and
up-to-date summary, please see http://www.netcraft.com/survey/

Apache can be used on a number of platforms and with many operating
systems. Amongst the most common operating systems used by the Apache
web server are: FreeBSD, Sun Solaris and Linux. Apache may be seen as a
reference implementation for the HTTP standard for all platforms for which it
was developed.

Apache has many adherents. Some of the companies in Norway that use
Apache for their external web services are: Aetat, the Data Inspectorate
(Datatilsynet), Statistics Norway (SSB), Statskonsult, Dagbladet (national
daily), VG (national daily), Startsiden (website), Sol (ISP) Stocknet and
Telenor.16

3.5.3 Bind
BIND (Berkeley Internet Name Demon) is an implementation of the DNS
protocol (Domain Name System) and provides a freely-distributable reference
implementation of the most important components of the DNS protocol,
including: a name-server, a DNS library for translating names to and from IP
addresses, and a tool for verifying that a DNS server is working according to
the standard.

BIND is the predominant name-server on the Internet and is essential for using
names, e.g. www.statskonsult.no, to find the IP address on a computer on the
Internet.

3.5.4 Perl
Perl is a programming language with particularly good text-manipulation
qualities. It is therefore particularly suitable for making interactive and dynamic
web pages. The majority of commercial web pages offering dialogue with the
users and access to database servers are developed with Perl. One example of
this is Amazon.com.

Perl can be integrated in web-servers, thus improving processing speed
substantially. All in all, the use of Perl makes communication with base systems
much easier and faster.

3.5.5 Sendmail
Sendmail is the most popular server for Internet e-mail. Approx. 75% of all e-
mail servers on the Internet are variations of Sendmail. Sendmail is freely
available and can also be re-distributed freely.

15 These figures are from Netcraft, October, 2000.
16 These details were obtained through the use of Netcraft’s services in October, 2000.

13

Sendmail offers three main types of services: e-mail routing (including various
forms of authentication and encryption devices), e-mail storage and retriving
(including support for POP and IMAP) and opportunities for expanding the e-
mail program (expansion such as delivery confirmations and integration with a
PKI).

Sendmail adheres to, and has been developed in accordance with, current e-mail
standards within the IETF. The latest versions of Sendmail also support ESMTP
(RFC 1869).

3.6 Development methods for open-source software
The method of developing open-source software is very different from that used
for developing proprietary software. The book “The Cathedral & the Bazaar”
(2) describes the development method for, the driving force behind, and the
culture of, open-source software. It is important to know how open-source
software is created in order to be able to understand the conceptual difference
between open-source and proprietary software.

The majority of open-source software projects start when one or more people
feel that there is a piece of software missing, or that an existing program is
insufficient or inadequate. They start by making a new program, often based on
current software where the source code is available. When there are sufficient
components in the program that work, not when the whole program is ready,
the development group publishes it to a newsgroup, or similar, so that othe r
people can use it and provide feedback and suggestions for improvements. If
enough people show interest in the program and provide such feedback, a new
open-source software project is born.

All open-source software projects have an owner. The owner is the person who
receives the suggestions for changes in the program, suggestions for new code,
corrections, improvements, and who publishes new versions of the program.
This is an on-going process. At the beginning of a project, new versions of a
program may be released every day.

All source code is published, and everyone can use the published source code
for existing or new open-source software projects.

The owner’s task is to develop a simple and effective program structure, to deal
with all the changes and new code suggested, and, of course, to develop new
versions of the program to include the changes and code he thinks appropriate.
This means that not all the code suggested is included, and not all the suggested
functions are implemented. Every program has a “read me” file that specifies
who has helped with what in the development of the program. It is important to
give credit to the contributors.

It is important for a project to have as many users of the program as possible in
order to acquire as many contributors as possible to enhance the program.

14

3.7 What type of software is best for developing open-

source software?
What can be developed as open-source software, and what has been developed
as open-source software? These are important questions, and the answers will
show what open-source software is suitable for.

The range of software stretches from infrastructure software to end-user
software. Infrastructure software might be anything from the implementation of
different types of server software and operating system kernels to DNS and
TCP/IP. End-user software here means software that the non-technical user
uses, such as word-processors, spreadsheets, accounting programs and various
types of trade-specific systems.

The development of open-source software has normally started on the
infrastructure side of the software range. Bind, Sendmail and Linux are all good
examples. Other programs such as Apache and Perl are about half way between
the two, but cannot be classified as non-technical end-user software.

What is clear to see is that open-source software is often software that other
programs have to run on top of, or it is a tool for developing other programs.
According to Brian Behlendorf, principle developer of Apache, there are many
reasons for open-source software having been developed on the infrastructure-
and server-side of the software range. Some of these reasons are described
below.
?? End-user applications are difficult to make. It is not only because a

programmer has to relate to an ever-changing non-standardised window
development environment, but also because the majority of developers are
not good graphical interface developers. Good end-user software requires a
good graphical user interface. This, in turn, requires a test laboratory, user
studies, etc, which the open-source software environment does not usually
have access to.

?? Culturally, open-source software has focused on network programs and
operating systems.

?? The development of open-source software benefits most from an
environment where incremental development is possible. Historically, this
has been easier on the server side, rather than on the client side, since the
structure and architecture of software are better known, and it is easier to
design a basic operating program that can be enhanced later.

?? A great deal of open-source software has been written by technicians to
solve a problem that arose whilst developing another program. The target
group for the software was other technicians.

To develop a program, you need to be well acquainted with the problems that
can arise, or to have a good specification of requirements. Traditionally, the
open-source software environment has not been aware of the requirements of

15

the various non-technical end-users, and has not been given good requirement
specifications. The way in which open-source software projects start, and
programs are developed, also makes it difficult for users to contribute if they
cannot contribute code. But in a development group for proprietary software, it
is perfectly normal for participants to be users.

The following quotation is intended to illustrate the necessity of being well
acquainted with an area in order to be able to develop good programs for it. It is
a quotation from Larry Augustin, President and CEO of VA Linux Systems.17

“Open-source developers understand UNIX. This is part of what made it
possible to create a better UNIX-Linux. In order to create a better MS Office,
open-source developers need to understand MS Office in as much detail as they
understood UNIX. My fear is that the open-source developer community
doesn’t understand Office. It can’t create what it doesn’t understand. What we
need is more developers using windows and Office.”[5]

“They cannot create what they don’t understand”. This is the quintessential
message. If developers of open-source software have to create an accounting
system, for example, they need to know a lot about accounting and all the rules
and routines pertaining to it – as well as be good programmers.

3.8 Advantages of open-source software
The motives for using and developing open-source software differ. They
include everything from philosophical and ethical reasons to purely practical
reasons. In the following section, we present some of the advantages of using
open-source software.

The first advantage is that it is free and freely available. This advantage is not
unique to open-source software. As described in Section 3.3, there is a
substantial amount of proprietary software freely available. That which
distinguishes open-source software from other software and gives it its
advantages is how an individual can make use of the main principles behind the
development of open-source software. These are described below:
?? The availability of the source code and the right to adapt this. The

availability of the source code makes it possible to adapt and improve the
program as required. It also makes it possible to create versions for new
computer platforms and to gain detailed knowledge as to how the program
works. If the program needs to be corrected, a user can make the changes
himself, assuming he knows how. The program can also be adapted to the
local environment – for example, in a different language, if the suppliers
cannot supply one already made.

17 VA Linux Systems sells computers with Linux pre -installed and customised to clients’
special requirements. They also offer a range of consultancy services for Linux. Their web
address is: http://www.valinux.com/

16

?? It provides the opportunity to redistribute bug fixes and modifications. It
facilitates the creation of new programs based on existing code; such
programs can then be distributed freely. Users can correct any bugs and
deficiencies in the program and can then redistribute the modified version.
If a new version is better, this will normally be adopted by the original
program, so that this original program improves.

?? The program can be used in the way that best suits the individual user.
Many free programs have limitations on how they can be used. A common
example is that a program cannot be used for commercial purposes. Such
restrictions do not exist in respect of software distributed under GPL. If
users want to use the program on new platforms (e.g. in embedded systems,
etc.), this is also acceptable.

?? There are no hidden “black boxes” in the program. In proprietary software,
some elements of functionality may be new. The program may have certain
functions that have not been documented and which the parties who made
the program can use. These are often created as undocumented system calls.

?? The development of software does not depend on just one company. If the
developer of the program does not want to crate new versions, or does not
want to enhance it for a user’s platform, the user is entitled to ask another
supplier to take over such a job, or to do it himself. In the case of Linux,
there are many suppliers of the same product, and all of them, in some way,
enhance the product and adopt the best ideas of what the other suppliers do.
The development and maintenance of the program does not depend on one
company, and supplier-dependency is thus minimised.

3.9 Disadvantages of open-source software
Here are some of the disadvantages of open-source software.
?? There are no guarantees that a particular program will be developed, or

that its development will be in the desired direction. All software projects
need human and financial resources to get going. You never know whether
a product will be developed sufficiently for it to be usable, or whether there
will be enough interest in the product. This is the case for all types of
software development, but the level of uncertainty is much greater in
respect of open-source software projects.

In all software projects, there is a period extending from the time an idea is
formed and work is started up to the time the actual product is available for
use. This is the most precarious phase of an open-source software project. If
the open-source software project is started without adequate corporate
support, it may be difficult to produce sufficient good-quality code for the
project to attract other programmers who can use and develop the product.
Without adequate support, or programmers, the project will just die, or fade
out.

?? It is sometimes difficult to know whether a particular open-source software
project actually exists and how far it has come. There is little marketing of
open-source software, so it is difficult for a user to know if there is an open-

17

source program to suit his needs.

?? Problems relating to patent rights and intellectual property rights. Rights of
intellectual property, or, more accurately, the breach of such rights, may be
a major problem for open-source software. It is difficult to know whether a
particular algorithm, or method of solving a problem, has been patented.
Software patents are a problem for everyone developing software, but the
subject affects open-source software more than other software for the
following reasons. The availability of the source code makes it easier to
discern infringements of intellectual property rights. The majority of open-
source software projects do not have the funds to call upon legal aid in
disputes relating to infringements of intellectual property rights.

18

4 Linux
As described in Section 3.5.1, Linux, or, more accurately, GNU/Linux, is an
operating system similar to UNIX. It is distributed in various ways from various
suppliers, and is also available for download via the Internet.

The following chapter describes Linux in greater detail, the various Linux
distributions, and the software available for Linux. It will be rather technical
and will require readers to have some technical knowledge.

4.1 What is a Linux distribution?
A Linux distribution is a collection of many different program modules called
packages, which, together, constitute a complete operating system. When we
buy a Linux distribution from a distributor, what we actually get is a collection
of packages that the distributor has put together for us. RedHat Linux consists
of over 400 packages from many different development projects.

A Linux distribution is more than just an operating system. It is a collection of
open-source software components that allow users to utilise the operating
system more easily and intuitively. Some of the components in the distribution
are: a graphical user interface, compilers, word-processors and various server
programs. All these components are open-source software. The distribution also
often include proprietary utilities such as office support programs and games.

The number of components in a Linux package and the frequently
accompanying installation programs prompt most people to buy a package
rather than to download the components and install them individually.

4.2 The Linux kernel
The most important component of Linux is the kernel. To be more accurate, the
kernel is Linux. The kernel is the system that controls communications (or the
interface) with other programs and hardware.

The kernel in an operating system manages the file-handling, I/O, signaling,
separation of processes, reception of interrupt reports from the various
hardware devices, and the communications with other hardware and parts of the
operating system.

19

4.3 Design targets for Linux18
Linux was developed for the Intel 386 platform, and was not originally
designed with portability in mind. The Linux kernel was not designed to be
portable, but rather to be efficient.

The Linux kernel was developed by considering the common characteristics of
existing hardware architecture and designing the operating system based on
what was common for these architectures. The kernel is termed “monolithic”,
and is not a “micro-kernel”, which was the main trend when the development of
Linux began.

In enhancing the Linux kernel, Linus Torvalds has laid down certain principles,
as follows.
?? General, common-sense design principles should be used rather than

designing the product for portability. Good, efficient design and code will,
themselves, lead to the system being portable.

?? Designers should, as far as possible, avoid building programmable
interfaces into the kernel. This is because once a programmable interface
has been built into the kernel, it must be maintained in new versions
because users will have started programming it.

?? Designers should be careful in adding new characteristics to the system.
They should consider such characteristics carefully before adopting them in
the kernel, since the kernel affects the entire system.

?? The kernel must be as modular as possible for several reasons. One reason
is that modular systems are easier to adapt to specific hardware
architectures since the whole system does not need to be changed. Another
reason is that people can work independently on different parts of the
kernel.

4.4 Graphical user interface
Linux was originally without a graphical user interface, but there are various
graphical user interfaces that can be used with the kernel to render it a complete
and modern operating system. Linux has more than ten different graphical user
interfaces. These are called “window managers”.

The graphical user interfaces run on top of XFree86 – a free version of the X
Windows System. The X System forms the infrastructure of all the Unix- like
Windows management systems. The X System is easy to configure and, to a
large extent, you can determine the appearance of the user interface. You can
configure the X System so that it resembles both Windows 95/98 and
Macintosh.

Currently, the two most popular user interfaces for Linux are KDE (the K
Desktop Environment) and GNOME (the GNU Network Object Model

18 The text in this section is an edited extract from an essay written by Linus Torvalds in his
book “Open Sources”.

20

Environment). All Linux distributions are distributed with one or more
graphical user interfaces.

4.5 Compilers
To adapt source code and make a separate version, you need a compiler that
translates source code to machine code. So the better the compiler is, the easier
it is to make customised versions, or versions for other platforms. Linux uses
the programming language called “C”. This comes with the compiler in all the
Linux packages. The most common compiler is called “gcc” (GNU C
Compiler).

4.6 Software development
Linux is an excellent platform for developing software. C and C++ compilers
and assemblers come as standard with all Linux distributions. There are also
development tools for newer languages like Perl and Python. The reason that so
much emphasis is put on software for software developers is that the
opportunity to customise software is one of Linux’s greatest advantages.
Without good software development tools, the availability of the source code
and the possibility of changing the code would have little practical benefit.

4.7 Licence terms for Linux
Linux has been developed and is distributed under a GNU General Public
Licence (GPL). See also Section 3.4.

Linux is open-source software, but anyone has the right to assemble a
distribution and sell it. This, of course, would be subject to meeting the licence
terms laid down in the GPL. Linux distributors cannot limit the terms of the
GPL, or restrict further distribution by other parties in any way. If you want to
install Linux on more than one computer, you only need to buy one distribution
(CD), as you can use this to install the program on all the computers. There is
one exception to this rule. To increase the value of their own packages, some
suppliers include commercial software. The commercial software may have
limitations as to how many computers it can be installed on. This should be
clear, however, from the documentation enclosed in the distribution.

4.8 Variety of distributions
We have looked at four different Linux distributions and assessed their different
characteristics. The packages are priced differently and have different
accompanying software. The purpose of this evaluation was not to crown a
winner, but to see whether the different packages add anything to Linux.

Below is a summary of some of the characteristics of the packages.

21

Distribution /
Characteristics

Caldera Corel RedHat SuSE

Price NOK 345 $ 89 +
$ 63 shipping
NOK 1,260

$ 80 +
$ 38 shipping
NOK 977

NOK 345

Type Caldera
Open Linux
2.3 Standard

Corel Linux
OS Deluxe

RedHat
Linux 6.1
Deluxe

SuSE Linux
6.4

How purchased Internet / via
Akademika

Internet /
direct from
Corel

Internet /
direct from
RedHat

Internet / via
Akademika

Delivery time 2 days 7 days 5 days 2 days

First/time
installation

Partition
Magic,
Lizard

Corel Install
Express

linuxconf YAST 2

Installation of
new package

COAS Corel package
installer

RPM RPM, SaX

Server software
included

Apache,
Samba,
Sendmail,
DB2

Apache,
Samba,

Apache,
Samba,
Sendmail,
MySQL

Apache,
Samba,
Sendmail,
MySQL

Office support
software
included

Star Office,
Applixware,
Wordperfect
(trial)

WordPerfect Star Office Star Office,
Applixware,
Wordperfect
(trial)

Operation and
administration

COAS

User-support
included

90 days
e-mail

30 days
e-mail and tel.

90 days web
30 days tel.

60 days
e-mail and tel.

Other user-
support
available

Telephone
support at
cost

22

5 Financial aspects of open-source software
This chapter describes how you can earn money with open-source software,
how the public sector can finance the development of open-source software and
how the use of open-source software can reduce overall IT costs.

5.1 Business methods for open-source software
It is interesting to consider how it is possible to earn money through open-
source software. Open-source software is freely available and can be
downloaded free-of-charge. Any earnings therefore have to be made in ways
other than selling the actual open-source software. This section describes
various business models for earning money from open-source software.

5.1.1 Creating a brand name and distributing open-source

software
This is the most obvious way of earning money from it. Companies such as
RedHat and SuSE assemble distributions of Linux and sell them with limited
user-support and printed manuals. Users do not pay for the actual software, but
for the assembly of the various programs, user-support and for the packing and
distribution. Buyers like to relate to a brand name and buy products from such
companies, rather than buying similar but unbranded products.

5.1.2 Selling open-source software designed mainly in-house.
As in the case described in the section above, it is really a brand name which
constitutes the product. Additionally here, though, it is the company selling the
open-source software that is also the main developer of the software. Thus, it is
this company that has the most expertise (since it knows the source code best)
and which, consequently, has a marketing advantage when selling services such
as user-support and special customisations. One of the disadvantages of open-
source software is that developers spend a lot of money creating the software
but are not remunerated directly for these costs. The critical sales point is to
know the product better than competitors do and always to keep a few months
ahead with new enhancements to the code. Cygnus, the main developer of GCC
(Gnu C Compiler), the compiler, is a good example of a company that survives
by having more expertise than its competitors have.

5.1.3 Proprietary products that increase the value of open-source

software
Many companies design both open-source software and proprietary software
based on open-source software. The open-source software is intended for the
consumer market, while the proprietary software is intended for the corporate
market. One example of this is Sendmail. Sendmail comes in a proprietary
version and an open-source software version, but the former includes any new
functionality four to eight months before the latter.

23

5.1.4 Consultancy services
This is a traditional activity. Give away the product and sell services such as
training, operations and maintenance. All the distributors of Linux assume most
of their income will be made through the sale of services. This is also one of the
most important arguments used for supporting open-source software. IT
companies must concentrate on offering good services to users since they
cannot base their survival on income from licences; the services provided
therefore improve.19

5.1.5 Selling accessories
This may appear trivial, but the sale of “accessories” is important for the open-
source software market. The publishing company, O’Reilly, supports the
development of open-source software by paying the main developers of the
software. They recuperate this outlay by selling books on Linux, Perl and other
subjects. Other partie s in this category are those selling hardware with open-
source software pre- installed, or that sell commercial software for Linux.
Curiously enough, there is a big market for various kinds of Linux mascots.

5.2 Financing open-source software development
This section deals with the financing of the development of open-source
software. It will form the basis of the proposals that the report puts forward
regarding how the public sector can support the development of open-source
software (see Chapter 10). It is based primarily on the EU-sponsored report on
open-source software.[4]

5.2.1 Externally financed development
The development of open-source software is here financed by external parties.
There are many reasons why someone may be willing to finance the
development of open-source software. Many contributors are companies that
earn their livelihood from open-source software in some way or other (see
Section 5.1).

A major contributor is the public sector, which through funds for research and
development can sponsor the development of new software for special
applications. Typical contributors in Norway might be the Research Council of
Norway and the Norwegian Industrial and Regional Development Fund.

Other contributors are those companies that sell accessories and that stand to
benefit from the development of a particular open-source program. With Linux,
there is a substantial amount of proprietary software (especially office support
software) that needs drivers or other software to work correctly under Linux.
Owners of this proprietary software are willing to pay for the development of
the necessary open-source drivers and software.

19 We have hitherto not seen any documentation to indicate that customer services have become
better or worse as a result of users using open-source software.

24

5.2.2 Internally financed development
Companies that sell open-source software, or services directly linked to open-
source software, will support the development of open-source software in order
to expand the market for such products. If they are good, the market will
expand and will probably lead to greater earnings. All the big distributors of
Linux contribute in this way. Paying for the development of the respective
product themselves, companies hope to create a larger market and, thus, to
increase the possibilities of making money.

5.3 Significance of open-source software on total IT

costs
Has open-source software any significant effect on a company’s total IT costs?
This question was one of the reasons for Statskonsult wanting to assess open-
source software. It is impossible to give a general answer to this question, since
all companies have different requirements when buying new IT equipment.
However, we should like to give a general description of how a company can
assess its own IT costs and concentrate on those areas where there are
differences between open-source and proprietary software.

We have not assessed the usefulness or suitability of IT purchases for any
company. This is something that all companies should do, however, though it is
impossible to do on a general basis. What we will be looking at here is the costs
in a costs/benefit assessment.

The term “total IT costs” is here intended to mean the costs of purchase and use of
a given IT system throughout the period the IT system is used. We have divided
the “lifetime” of a given IT purchase into periods: information gathering, purchase,
implementation, training, day-to-day use, maintenance, and transfer to new
technology. We will be looking at all these periods in detail.

?? Information gathering. This phase involves compiling information on the

product to be purchased. It may prove difficult to find information on open-
source software, since the distributors do not usually have their own
marketing department. The information that exists may be more accurate
than that for proprietary software since open-source software manufacturers
generally do not earn money on the sale of their products. Furthermore, the
code is available for inspection.

The public sector can ensure through its purchase routines that information
on open-source software is just as readily available as information on other
types of software.

?? Acquisition. Purchases made in the public sector must adhere to the rules
laid down for public sector acquisitions. These rules are intended to view all
potential suppliers equally. If a company considers an item for purchase

25

based purely on its price, open-source software will obviously come out
best, since such products have a very low initial cost. It is worth noting that
a considerable amount of software is acquired with the purchase of new
hardware, or through the upgrading of existing software, so it is impossible
to draw up a calculation to cover all companies even in this isolated field.

?? Implementation. This covers installation and initialisation of the system so
that it is ready for use throughout the company. Large companies selling
proprietary software are now better equipped for this work than companies
that sell open-source software, because they have traditionally been more
involved in this phase. If big companies are to use open-source software, the
sellers of open-source software must set up a system able to handle
distribution of large volumes.

?? Training. Training costs should not be influenced at all by whether the
software is open-source or not. There is currently a bigger range of training
courses for proprietary software than there is for open-source software. The
price is not different, but it is easier to find a course that is suitable for an
individual company with proprietary software. There are also many more
users who know proprietary software than those who know open-source
software, so some costs would be incurred for training if a company chose
to change system.

?? Day-to-day use and maintenance. This is often the phase that incurs the
greatest proportion of total IT costs. Advocates of open-source software
claim that their software makes maintenance cheaper, but we have not
found any documentation to prove this yet.

?? Transition to a new system. New IT systems are often built to replace old
systems. If a company has the source code (not necessarily open-source
code), the transfer to a new system will often be easier, since the respective
company will have a better idea of how the former system was
implemented. The most important thing in this phase is that the sys tem is
possible to document and that the data from the previous system can be
used on the new one.

We can see from an assessment of the various phases of the lifetime of an IT
system, that it is only the purchase phase that clearly stands out in favour of open-
source software. One of the major costs of moving over to open-source software
is the training of the users of the new system. In the other phases, it is difficult to
see any particular differences in the costs of using open-source software
compared to other type of software.

Our conclusion on the issue of whether the public sector can reduce its costs by
changing over to use open-source software is as follows. The use of open
source software to reduce costs would be beneficial for companies where IT
costs are incurred primarily through the purchase of software licences, and

26

where the costs of training users to use “new” software are relatively low.

6 Examples of the use of open-source
software in public administration

Apart from the use of Linux and Apache for web services, we have few
examples of the application of open-source software in public administration.
The examples we do have come from the education sector.

6.1 The University of Oslo
The University of Oslo uses open-source software in many ways. Many of the
faculties provide end-users with access to Linux. Many run Linux on their
servers, which sometimes run highly advanced technical applications. Apache
is widely used as a web-server, and Sendmail and Bind are the principal
infrastructure programs.

The above-mentioned programs are perfectly common applications of open-
source software. Another use of Linux which, until now, has been uncommon,
but which is very interesting, is that of using it as a thin client. This means that
Linux is only used for handling user interfaces from programs running on the
servers.

All user applications are stored on the server. These may be common office
support programs or more technical programs. The servers run Windows or NT.
The client is used only for communicating with the server and for displays.
Users see the customary Windows screens, but the operating system is Linux
and it is this which is generating the screen displays. This operating method
avoids the need to install Windows on all the end-users’ PCs.

Thus, by replacing Windows with Linux, but keeping the old software, it is
possible to save considerably on licence costs. The disadvantage, or perhaps the
advantage, of this is that you need to change to an environment with thin
clients, so end-users lose direct control of what is on their respective computer.

In environments where a company wants to introduce thin clients, but not to let
the users have direct access to local software, it is a good idea to replace
Windows with Linux on all the clients. More and more universities and
technical colleges are using Linux in order to introduce thin clients.

6.2 Høle Primary School
Høle Primary School has installed Linux on old PCs that it has obtained from
the business community. The PCs were without an operating system, so this had
to be installed. The school chose Linux and thus saved considerably on licence
costs.

27

7 Commercial services for open-source
software in Norway

7.1 Purchasing software
It is easy to buy open-source software in Norway. We ordered the software
from Akademika and the package arrived at our door two days later. A standard
invoice was enclosed so we could settle up in the usual way. There are many
shops in Norway that sell open-source software via the Internet, and many that
sell Linux distributions over the counter.

It is also possible to order Linux distributions directly from the suppliers. This
takes longer and, taking into account the costs of shipping and import duty, is
more expensive than buying from suppliers in Norway. The advantages are that
you can obtain versions that are not available in Norway, and you can obtain
the latest versions more quickly.

Commercial software for Linux is sold in the same way as other commercial
software. Large companies like IBM, SGI and Oracle all produce Linux
versions of their software. They also have a support department for helping
those customers who choose to run their software under Linux.

7.2 Purchase of computers with ready-installed

software
Many suppliers now sell their computers with open-source software already
installed. Such computers are usually set up with Linux, but server software
such as Apache and Sendmail may also be installed.

7.3 Consultancy services
Consultancy services are provided by companies whose sole activity is
consultancy, and by the suppliers of commercial software. The consultancy
companies include large international companies that provide “everything”, and
small niche companies who support only Linux and associated software.

7.4 Courses and training
More and more companies are offering training courses in the use of Linux and
other open-source software. Such courses are often held by companies that sell
software for Linux and Unix, and by universities and technical colleges. There
are still, however, fewer training courses for Linux than there are for Windows.

28

8 Use of open-source software as a
standardisation and development tool

Standards and standardisation are important components of IT development.
Open-source software will have a significant influence on future
standardisation. Some parties involved in IT standardisation, such as the IETF,
reflect the culture of open-source software, while other parties wish to use
open-source software as a tool for the distribution and better interoperability of
standards.

8.1 The IETF and open-source software
The way in which the IETF (Internet Engineering Task Force) is organised and
functions is a good example of “Bazaar” development principles, as put forward
by Eric Raymond [1].

The IETF defines open standards for the fundamental protocols on the Internet,
and standards for various shared applications such as security, transport
services and administration. All IETF standards are free and readily available
on the Internet.

In order for the IETF standard to continue to remain a standard, there must be,
within a given time, at least two different implementations of the standard that
work together. Open-source software is important in this respect, as it can
spread implementations of the standard and can test various products against
each other.

The IETF is open to everyone; you become a “member” simply by participating
in discussion groups and meetings. Everyone is treated as an individual and not
as a representative from a company or public authority.

Both the standardisation process and the standards are based on openness.

8.2 Internet and open-source software reference

implementations
A reference implementation of a standard is an implementation that other
parties can refer to, or test something against, when creating interoperable
products based on this standard. A reference implementation should implement
all the properties of a standard and in the correct way. Apache is an example of
a reference implementation of HTTP (the standard). Internet browsers must be
able to communicate with Apache in order to be able to claim that they are a
correct implementation of the standard.

Part of the success of the Internet is that the products based on the Internet
standards are interoperable. This creates a well- integrated whole. Most of the
fundamental protocols used by the Internet exist as open-source software
reference implementations. Reference implementations are often released early

29

and command a large part of the market. Other products have to be
interoperable with the reference implementation in order to gain a foothold in
the market. Examples of this are: TCP/IP, DNS, SMTP and HTTP.

8.3 Open-source software as a catalyst for the spread

of new standards
In order to develop products based on standards, it is important that
implementations of standards exist that the developers can build on. Open-
source software plays an important role in this respect. If the standard has been
implemented as an open-source software reference implementation, developers
can use this implementation of the standard to develop new products. If only
proprietary implementations of the standard exist, developers wishing to
develop new products based on the standard must first implement their own
version of the standard, or buy a licence to use a proprietary version. This slows
down new developments and the process of adopting new standards.

In connection with the development of new standards to support the
implementation of the EU directive on electronic signatures, the EU
Commission has requested the development of open reference implementations
of some of the already agreed standards from ETSI. This is intended to facilitate
product development and research in the field.

In Norway, the Norwegian Research Council and the National Business and
Regional Development Fund might be suitable organisations for promoting the
use of open-source software in development work. The Norwegian
Standardisation Association might be the right party to promote open-source
software in the field of IT standardisation.

30

9 Assessment of the applications of open-
source software

9.1 Assessment methods for open source software
In choosing our assessment criteria, we have differentiated open-source
software intended for servers and infrastructure, and open-source software
intended primarily for use by normal end-users.

We have concentrated on the following factors when assessing open-source
software for servers and infrastructure.
?? Acquisition. The software must be easy to obtain.
?? Installation. The software must be easy to install – both for the first time

and when installing upgrades.
?? Support. Users must have access to professional software support.
?? Administration and operation of the system.

?? Flexibility, simplicity and the possibility of customisation.
?? Compatibility with other systems.
?? Market position
?? Operating costs

?? Standards. Does the program adhere to current standards?
?? Training. Users must have access to training in the use of the system.
?? Usability for the public sector. Is the program usable by the public sector?

We concentrated on the following factors when assessing open-source software
for end-users (the operating system with programs such as word-processors and
e-mail).
?? Acquisition. The software must be reasonably priced and easy to obtain.
?? Installation. The software must be easy to install – both for the first time

and when installing upgrades. New programs must be easy to install and
remove.

?? User support. User support must be available for the programs installed.
?? Training. Training must be available for learning how to use different

programs.
?? User-friendliness. The programs must be equally as user- friendly as

corresponding commercial software. In respect of office support programs,
it is natural to choose Microsoft Office as a source of comparison.

?? Language. The programs must be available in Norwegian.
?? Operating costs. Costs of running the programs over the long-term.
?? Usability for the public sector. Is the program usable by the public sector?

We selected the criteria based on what we considered to be the most important
factors covering every stage of acquisition and use of software. Based on these

31

criteria, it had to be possible to analyse the total costs of obtaining and using the
software.20

9.2 Which branches of public administration are best

suited to using open-source software?
Public administration covers a vast array of fields. Not all of these fields are
well suited to using open-source software. Departments and sectors with large,
complex, custom-built programs, and departments dependent on the use of
custom-built administration systems are not well suited to using open-source
software. This is because i) such open-source software does not exist, and ii)
such software is not suitable for development as open-source software.

Open-source software is better suited for use in environments where word-
processing, e-mail and Internet are the main activities. This category covers
many ministries, some directorates, and large areas of the education sector. All
these parties could use open-source software. The education sector uses a wide
variety of software, while the directorates and ministries do not.21 The
education sector thus seems more adept at using new software than the
ministries and directorates. Furthermore, one of the goals of the education
sector is to provide training – essential for using new software. The training
staff at technical colleges and universities are also highly skilled in the field of
IT. All in all, it is the education sector which would appear to be the best place
to start using open-source software in public administration.

We do not believe that open source software for end-users can currently replace
the commercial alternatives due to the better functionality and integration
capabilities in the commercial alternatives.

9.3 What types of open-source software is suitable for

public administration?
As with other software, there are significant differences in user-friendliness and
usability of open-source software. In this report, we have chosen to assess
software for end-users and servers. Software for end-users includes graphics,
word-processing, spreadsheets, browsers and e-mail clients. Server software
includes e-mail, web page set-up, and standard file management.

9.3.1 End-user software
There are several good word-processors and spreadsheets for Linux. The
disadvantage is that many of them are not open-source software, so they have
the same disadvantages as those of other proprietary software. The word-
processors and spreadsheets that exist as open-source software regrettably lack
the holistic and integration characteristics that the proprietary products have. In
respect of browsers and e-mail clients, many products are available for running

20 This is often termed “total cost of ownership (TCO)” for IT products.
21 This can be extracted from the background figures in the report “IT in the public sector 1999”

32

under both Linux and Windows. Not all of these products exist as open-source
software, but the cost of a licence to use them is often small, or it is free-of-
charge.

There are currently no word-processors, spreadsheets and e-mail clients
developed as open-source software that have the same completeness and
functionality as the commercial products. Considering the majority of users will
require training and a period of adjustment when changing over to new
products, such products should have approximately the same functionality as
the old ones. Price is less significant for end-users in this respect. If staff are to
undergo training and have not become dependent on the functionality of
proprietary products, open-source software is ideal. We believe that open-
source software intended for end-users will be most appropriate for the
education sector and for particularly well-motivated and interested users.

9.3.2 Server software
The situation is different for server software. Most software for developing and
running web-services is already open-source software. There are also many
open-source server programs for e-mail. In these areas, there is clearly great
potential for the use of open-source software in public administration.
Unfortunately, however, it is also in just these areas that developers of
proprietary software offer their software free-of-charge, or at discounted prices,
so that changing over to open-source software will not necessarily save much
money. It may be wise, however, to use open-source software to prevent
excessive dependence on proprietary software, which is particularly likely to
occur in ministries and directorates.

Open-source server software is functionally and administratively equally as
good as proprietary alternatives. Suppliers may not, however, be able to provide
the same level of support. This situation is changing, though, since many large
suppliers are now offering support for open-source server software such as
Apache, Samba and Sendmail.

Our opinion is that Linux is well suited for running on the servers in public
administration – particularly so if Apache is also run as a web- server.

33

10 Conclusions, measures and
recommendations

10.1 Conclusions
The public sector does not benefit from being too dependent on just one type of
software. Every business should, as far as possible, be free to choose the
software it believes to be the most suitable for its tasks. This means that
businesses need to be acquainted with different products and services. Open-
source software is a cheap way for users to get to know new software.

Public administration should be aware of how to benefit from open-source
software. Having access to the source code means that more people can get to
know the fundamental technology of the respective product, and this may make
it easier to develop and spread new technology. Open-source software will
become increasingly important, particularly in the fields of education, research
and development.

Open-source software is predominant in connection with the implementation of
Internet infrastructure. Both the development and the implementation of
standards for the Internet are based on the ideas and thoughts of open-source
software. The Norwegian authorities should be aware of the possibilities that
open-source software provides for rapid distribution of new standards in the
market.

Parties developing open-source software via the Internet need to have a very
clear understanding of what needs to be developed. The development of server
and infrastructure software as open-source software is thus ideal. The reason
for this is that there are often clear specifications and standards that the
developers can use. It is usually the case that the parties who are engaged to
implement a standard were previously involved in defining it. End-user
programs are not so well suited for development as open-source software, since
there are no standards for these and it is more difficult to define a clear
specification. This problem is also reflected in what open-source software that
is avalable.

It is not always the best technology that wins through. This is important to
remember. There are many non-technical reasons why people choose one
operating system, or device, rather than another. These might be, for example,
the marketing of the product, design, price, availability of accessories (for
operating systems, this might be the programs available, and the hardware
supported), what users associate with the product and which other users use it.

Our assessment of Linux and open-source software is thus not merely a
technical assessment, but is a holistic assessment that takes into consideration
users’ experience and the investments that the public sector has already made in
IT.

34

It cannot be taken for granted that open-source software is cheaper than
commercial software. In our view, the use of open source software to reduce
costs would be beneficial for companies where IT costs are incurred primarily
through the purchase of software licences, and where the costs of training users
to use “new” software are relatively low.

Linux is primarily an operating system that was intended for use on servers.
This is reflected in the method of marketing the majority of Linux distributions
and in the documentation that accompanies the programs.22

Linux is a variant of Unix, so it is natural that Linux is used primarily in those
situations that other Unix operating systems were formerly used. Unix systems
were customarily used on servers, and we can see that Linux is also used
primarily for the same purpose. Those environments in which Unix was used
will be the first to use Linux.

Linux could play an important role particularly in the education sector as an
operating system for both servers and end-users. By encouraging the use of
different software in training activities, users will benefit from broader
experience and will be in a better position to choose software themselves later.

Linux is now a good operating system for servers and would be well suited for
use by the public sector. We do not believe that open source software for end-
users can currently replace the commercial due to the better functionality and
integration capabilities in the commercial alternatives..

10.2 Ways of increasing the use of open-source

software
There are many ways of increasing the use of open-source software in public
administration. This section describes just a few of them.

?? Make the use of open-source software mandatory
?? Support the use of open-source software
?? Distribute and develop open-source software
?? Support research and development of open-source software

10.2.1 Make the use of open-source software mandatory
The mandatory use of open-source software would be very effective in some
circumstances. The obligation to use a particular technology is always,
however, rather risky. Is it the right technology? Are the business areas that

22 The following quotation is from the printed documentation accompanying Caldera
OpenLinux 2.3: “Today, Linux is first and foremost a server operating system. Although many
applications are now appearing that allow Linux to be used as a primary workstation or
desktop system, most users of Linux focus on the server capabilities of the operating system.”

35

have been instructed to use the technology ready to implement it? Are the
prospective users sufficiently motivated to use the new technology?

In general, it is better to avoid making the use of a particular technology
mandatory, and rather to point out the advantages and disadvantages of it, so
that the target group can itself choose whether or not to implement the
technology.

10.2.2 Support the use of open-source software
By organizing the enviroment better you can support the use of open-source
software. There are various ways of doing this. You can simplify the acquisition
process, providing training in the use of open-source software, or you can
provide help with its operation.

The optimisation of the environment for using open-source software will
promote greater use of such software, yet without forcing anyone to use it
against his will.

10.2.3 Distribute and develop open-source software
One way of supporting the use of open-source software is for the state itself to
distribute its own version of Linux with other appurtenant open-source
software. This would make it easier for companies to start using open-source
software. On the other hand, it may upset the market if the state starts
distributing its own Linux distributions. The content of the package is also an
important issue. Another issue is whether the cost of such distribution would be
justifiable, considering that it is free to redistribute existing Linux distributions.

One less exclusive solution would be for the public sector to copy and distribute
existing Linux distributions, so that those parties wishing to try out open-source
software could easily obtain it by applying to a public authority.

The public sector should also consider whether it could supply software that it
currently has ownership rights to, as open-source software.

10.2.4 Support research and development of open-source

software
By supporting the development of open-source software, you help to enhance
the infrastructure and to make the technology available for everyone. As
mentioned above, it is becoming a trend that new standards are being
implemented as open-source software. If the contributors of funds for research
and development were to demand that the result of the research had to be made
available as open-source software, the research would be easier for others to
make use of. We believe that in allocating research and development funds, it
should be a requirement that the software developed be made available as open
source software.

36

10.3 Recommendations
?? Linux is a product that the public sector should support in order to promote

the development of a potential alternative to Microsoft’s operating systems.
Linux is currently best suited for use as a server operating system.

?? The state should support the development of open-source software to
promote alternatives to current software. New open-source software could
promote the enhancement of current software and prevent the public sector
from becoming too focused on one direction. Support could be offered in
the form of research and development funding.

?? In allocating research and development funds, the state should require that
the software developed be made available as open source software.

?? The public sector should also consider whether it could publish source code
that it currently has ownership rights to as open-source software.

?? The state should urge schools and the education sector in general to use
Linux and other open source software. This is because schoolchildren and
students must acquire as much knowledge as possible about a variety of
products in order to build up a solid foundation on which to be able to
choose at a later date the products they believe are the most suitable.

?? To save on licence costs, used PCs that are given to schools could be
equipped with open-source software.

?? The infrastructure should be based on open standards implemented as open-
source software. The public sector should lay down requirements for the use
of open standards implemented as open-source software in the infrastructure
it uses. The use of open standards and solutions based on open-source
software could be advisable in connection with the establishment of
infrastructure for the distribution and handling of digital signatures.

37

Appendix I References

[1] Chris DiBona, Sam Ockman & Mark Stone (Editors): Open-sources –
Voices from the Open-source Revolution.
O’Reilly & Associates, 1999. ISBN 1-56592-582-3

[2] Eric S. Raymond: The Cathedral & the Bazaar.
O’Reilly & Associates, 1999. ISBN 1-56592-724-9

[3] The Open Source Initiative. The open-source definition, 1999.
Available at: http://www.opensource.org/osd.html

[4] Free Software / Open-source: Information Society Opportunities for
Europe? Version 1.2 April 2000.
Working group on Libre software23
Available at: http://eu.conecta.it/paper.pdf

[5] Linux Journal. June 2000 “The new beginning”
[6] NOU 2000:24 “A Vulnerable Society”
[7] Open-source: the unauthorized white papers. Donald K. Rosenberg

M&T books, 2000. ISBN 0-7645-4660-0

23 The work group for Libre Software was assembled on the initiative of the EU Commission’s
commissioner for the area ”Information Society”.

38

Appendix II Abbreviations

BIND Berkeley Internet Naming Daemon
BSD Berkeley Software Distribution
DNS Domain Name System
ESMTP Extended Simple Mail Transfer Protocol
ETSI European Telecommunications Standards Institute
GNOME the GNU Network Object Model
GNU Gnu’s Not Unix
GPL GNU General Public Licence
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IEC International Electrotechnical Committee
IEEE The Institute of Electrical and Electronic Engineers
IETF Internet Engineering Task Force
IMAP Internet Message Access Protocol
IP Internet Protocol
KDE The K Desktop Environment
OSI Open Systems Interconnection
PKI Public Key Infrastructure
POP Post Office Protocol
POSIX Portable Operating System Interface for unIX
RFC Request For Comments
RPM RedHat Package Manager
SMTP Simple Mail Transfer Protocol
TCO Total Cost of Ownership
TCP Transmission Control Protocol

39

Appendix III GPL (GNU General Public Licence)
GNU GENERAL PUBLIC LICENCE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this licence document, but changing it is not allowed.

Preamble

The licences for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licence is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public Licence applies to most of
the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public Licence instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licences are designed to make sure that you have the freedom
to
distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if
you modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this licence which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the

40

software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licences, in effect making the program proprietary. To prevent this, we
have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This Licence applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public Licence. The “Program”, below, refers to any such program
or work, and a “work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, trans lation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by
this Licence; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this Licence and
to the absence of any warranty; and give any other recipients of the Program a
copy of this Licence along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

41

 a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
Licence.

 c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this Licence. (Exception:
if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this Licence,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on
the terms of this Licence, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
Licence.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and
2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding

42

source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alterna tive is allowed only for non-
commercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this Licence. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this Licence. However, parties who have received copies, or
rights, from you under this Licence will not have their licences terminated so
long as such parties remain in full compliance.

5. You are not required to accept this Licence, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you do
not accept this Licence. Therefore, by modifying or distributing the Program (or
any work based on the Program), you indicate your acceptance of this Licence
to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a licence from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing compliance by third
parties to this Licence.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on

43

you (whether by court order, agreement or otherwise) that contradict the
conditions of this Licence, they do not excuse you from the conditions of this
Licence. If you cannot distribute so as to satisfy simultaneously your
obligations under this Licence and any other pertinent obligations, then as a
consequence you may not distribute the Program at all. For example, if a patent
licence would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this Licence would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public licence practices. Many people have
made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licencee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this Licence.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this Licence may add an explicit geographical
distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
Licence incorporates the limitation as if written in the body of this Licence.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public Licence from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this Licence which applies to it and “any later version”,
you have the option of following the terms and conditions either of that version
or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this Licence, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for

44

permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

45

one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public Licence as published by the Free Software
Foundation; either version 2 of the Licence, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public Licence for more details.

You should have received a copy of the GNU General Public Licence
along with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public Licence. Of course, the commands you use may be
called something other than `show w' and `show c'; they could even be mouse-
clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public Licence does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this

46

is what you want to do, use the GNU Library General Public Licence instead of
this Licence.

Return to GNU’s home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the
FSF.

Comments on these web pages to webmasters@www.gnu.org, send other
questions to gnu@gnu.org.

Copyright notice above.
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111, USA

Updated: 3 Jan 2000 rms

47

Appendix IV The BSD licence (Berkeley Software
Distribution)

Copyright (c) <YEAR>, <OWNER>
 All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

?? Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

?? Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

?? Neither the name of the <ORGANIZATION> nor the names of its

contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

